压缩-投影主成分分析与第一特征向量

J. Fowler
{"title":"压缩-投影主成分分析与第一特征向量","authors":"J. Fowler","doi":"10.1109/DCC.2009.44","DOIUrl":null,"url":null,"abstract":"An analysis is presented that extends existing Rayleigh-Ritz theory to the special case of highly eccentric distributions. Specifically, a bound on the angle between the first Ritz vector and the orthonormal projection of the first eigenvector is developed for the case of a random projection onto a lower-dimensional subspace. It is shown that this bound is expected to be small if the eigenvalues are widely separated, i.e., if the data distribution is highly eccentric. This analysis verifies the validity of a fundamental approximation behind compressive projection principal component analysis,a technique proposed previously to recover from random projections not only the coefficients associated with principal component analysis but also an approximation to the principal-component transform basis itself.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"13 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressive-Projection Principal Component Analysis and the First Eigenvector\",\"authors\":\"J. Fowler\",\"doi\":\"10.1109/DCC.2009.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis is presented that extends existing Rayleigh-Ritz theory to the special case of highly eccentric distributions. Specifically, a bound on the angle between the first Ritz vector and the orthonormal projection of the first eigenvector is developed for the case of a random projection onto a lower-dimensional subspace. It is shown that this bound is expected to be small if the eigenvalues are widely separated, i.e., if the data distribution is highly eccentric. This analysis verifies the validity of a fundamental approximation behind compressive projection principal component analysis,a technique proposed previously to recover from random projections not only the coefficients associated with principal component analysis but also an approximation to the principal-component transform basis itself.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"13 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将现有的瑞利-里兹理论推广到高偏心分布的特殊情况。具体地说,对于低维子空间上的随机投影,给出了第一里兹向量与第一特征向量的正交投影之间夹角的界。结果表明,如果特征值间距很大,也就是说,如果数据分布是高度偏心的,则期望这个边界很小。该分析验证了压缩投影主成分分析背后的基本近似的有效性,压缩投影主成分分析是一种先前提出的技术,不仅可以从随机投影中恢复与主成分分析相关的系数,还可以近似于主成分变换基本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive-Projection Principal Component Analysis and the First Eigenvector
An analysis is presented that extends existing Rayleigh-Ritz theory to the special case of highly eccentric distributions. Specifically, a bound on the angle between the first Ritz vector and the orthonormal projection of the first eigenvector is developed for the case of a random projection onto a lower-dimensional subspace. It is shown that this bound is expected to be small if the eigenvalues are widely separated, i.e., if the data distribution is highly eccentric. This analysis verifies the validity of a fundamental approximation behind compressive projection principal component analysis,a technique proposed previously to recover from random projections not only the coefficients associated with principal component analysis but also an approximation to the principal-component transform basis itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信