血液流经狭窄动脉的数学模型

M. Chugani, M. Savic, Z. Macek
{"title":"血液流经狭窄动脉的数学模型","authors":"M. Chugani, M. Savic, Z. Macek","doi":"10.1109/NEBC.1994.305189","DOIUrl":null,"url":null,"abstract":"The authors derive the equation for the velocity vector in the axial direction for an incompressible, Newtonian fluid, flowing through a nonuniform, symmetric, rigid, cylindrical tube. The authors apply their solution to regions of arteriosclerotic plaque in mammalian arteries and state the conditions under which their assumptions are valid. The results of simulations carried out for several shapes and sizes of plaque deposits, which have been modeled by a /spl beta/-distribution, are presented.<<ETX>>","PeriodicalId":117140,"journal":{"name":"Proceedings of 1994 20th Annual Northeast Bioengineering Conference","volume":"65 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model of blood flow through stenotic arteries\",\"authors\":\"M. Chugani, M. Savic, Z. Macek\",\"doi\":\"10.1109/NEBC.1994.305189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors derive the equation for the velocity vector in the axial direction for an incompressible, Newtonian fluid, flowing through a nonuniform, symmetric, rigid, cylindrical tube. The authors apply their solution to regions of arteriosclerotic plaque in mammalian arteries and state the conditions under which their assumptions are valid. The results of simulations carried out for several shapes and sizes of plaque deposits, which have been modeled by a /spl beta/-distribution, are presented.<<ETX>>\",\"PeriodicalId\":117140,\"journal\":{\"name\":\"Proceedings of 1994 20th Annual Northeast Bioengineering Conference\",\"volume\":\"65 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 20th Annual Northeast Bioengineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBC.1994.305189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 20th Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1994.305189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者推导了一种不可压缩的牛顿流体流经非均匀对称刚性圆柱管的轴向速度矢量方程。作者将他们的解决方案应用于哺乳动物动脉硬化斑块区域,并说明他们的假设有效的条件。本文给出了用a/ spl beta/-分布模拟的几种形状和大小的斑块沉积的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical model of blood flow through stenotic arteries
The authors derive the equation for the velocity vector in the axial direction for an incompressible, Newtonian fluid, flowing through a nonuniform, symmetric, rigid, cylindrical tube. The authors apply their solution to regions of arteriosclerotic plaque in mammalian arteries and state the conditions under which their assumptions are valid. The results of simulations carried out for several shapes and sizes of plaque deposits, which have been modeled by a /spl beta/-distribution, are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信