模式汉明距离对Hopfield网络存储容量的影响

S. K. Manandhar, R. Sadananda
{"title":"模式汉明距离对Hopfield网络存储容量的影响","authors":"S. K. Manandhar, R. Sadananda","doi":"10.1109/ICONIP.2002.1202172","DOIUrl":null,"url":null,"abstract":"Although the Hopfield network can store and retrieve patterns, its storage capacity is limited. In this study we investigate the effect of Hamming distance of stored patterns on the success of their retrieval. The results show that by removing patterns having low Hamming distance with each other, the capacity of the network increases.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Hamming distance of patterns on storage capacity of Hopfield network\",\"authors\":\"S. K. Manandhar, R. Sadananda\",\"doi\":\"10.1109/ICONIP.2002.1202172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the Hopfield network can store and retrieve patterns, its storage capacity is limited. In this study we investigate the effect of Hamming distance of stored patterns on the success of their retrieval. The results show that by removing patterns having low Hamming distance with each other, the capacity of the network increases.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然Hopfield网络可以存储和检索模式,但其存储容量有限。本研究探讨了汉明距离对记忆模式检索成功的影响。结果表明,通过去除彼此之间汉明距离较低的模式,可以提高网络的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Hamming distance of patterns on storage capacity of Hopfield network
Although the Hopfield network can store and retrieve patterns, its storage capacity is limited. In this study we investigate the effect of Hamming distance of stored patterns on the success of their retrieval. The results show that by removing patterns having low Hamming distance with each other, the capacity of the network increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信