液体(C8F16和C9F18)在不同热力学条件下的声学研究

T. V. Burlachenko, N. B. Lezhnev
{"title":"液体(C8F16和C9F18)在不同热力学条件下的声学研究","authors":"T. V. Burlachenko, N. B. Lezhnev","doi":"10.1117/12.222765","DOIUrl":null,"url":null,"abstract":"The fluorocarbons liquids are studied by acoustical method and Brillouin scattering in temperature range from 273 to 313 K and pressure from 0.1 to 50 MPa. Acoustical relaxation in liquid C8F16 with relaxation time of order 10-10 s is discovered. This acoustical relaxation has been analyzed under an assumption of a single vibration relaxation. The measurement of hypersonic velocity by means of Mandelshtam-Brillouin light scattering under high pressure was conducted within two angles of light scattering.","PeriodicalId":405317,"journal":{"name":"Acousto-Optics and Applications","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic investigations of liquids (C8F16 and C9F18) at the various thermodynamic conditions\",\"authors\":\"T. V. Burlachenko, N. B. Lezhnev\",\"doi\":\"10.1117/12.222765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluorocarbons liquids are studied by acoustical method and Brillouin scattering in temperature range from 273 to 313 K and pressure from 0.1 to 50 MPa. Acoustical relaxation in liquid C8F16 with relaxation time of order 10-10 s is discovered. This acoustical relaxation has been analyzed under an assumption of a single vibration relaxation. The measurement of hypersonic velocity by means of Mandelshtam-Brillouin light scattering under high pressure was conducted within two angles of light scattering.\",\"PeriodicalId\":405317,\"journal\":{\"name\":\"Acousto-Optics and Applications\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acousto-Optics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.222765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acousto-Optics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.222765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在温度273 ~ 313k、压力0.1 ~ 50mpa的条件下,采用声学方法和布里渊散射对含氟碳化合物液体进行了研究。发现了C8F16液体的声弛豫,弛豫时间为10 ~ 10 s。在单一振动松弛的假设下,对这种声松弛进行了分析。利用高压下曼德尔施塔姆-布里渊光散射在两个光散射角范围内进行了高超声速的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic investigations of liquids (C8F16 and C9F18) at the various thermodynamic conditions
The fluorocarbons liquids are studied by acoustical method and Brillouin scattering in temperature range from 273 to 313 K and pressure from 0.1 to 50 MPa. Acoustical relaxation in liquid C8F16 with relaxation time of order 10-10 s is discovered. This acoustical relaxation has been analyzed under an assumption of a single vibration relaxation. The measurement of hypersonic velocity by means of Mandelshtam-Brillouin light scattering under high pressure was conducted within two angles of light scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信