利用脑电图识别脑控车辆的紧急情况

Teng Teng, Luzheng Bi, Xinan Fan
{"title":"利用脑电图识别脑控车辆的紧急情况","authors":"Teng Teng, Luzheng Bi, Xinan Fan","doi":"10.1109/IVS.2015.7225896","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to recognize an emergency situation by translating EEG signals of a disabled driver while he or she uses a brain-machine interface without using his or her limbs to drive a vehicle. EEG signals were first filtered by independent component analysis along with information entropy. And then the sums of powers of theta wave in the power spectrum of EEG signals from 13 channels were used as features of the classifier built by linear discriminant analysis. The pilot experimental results from two participants in a driving simulator indicated that the model recognized emergency situations (e.g., pedestrian sudden occurrence) 400 ms earlier than the response of drivers with a hit rate of 76.4%, suggesting that the proposed method is feasible. The proposed method can be used as a complementary method to the existing ones based on detecting external objects with sensors.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Using EEG to recognize emergency situations for brain-controlled vehicles\",\"authors\":\"Teng Teng, Luzheng Bi, Xinan Fan\",\"doi\":\"10.1109/IVS.2015.7225896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to recognize an emergency situation by translating EEG signals of a disabled driver while he or she uses a brain-machine interface without using his or her limbs to drive a vehicle. EEG signals were first filtered by independent component analysis along with information entropy. And then the sums of powers of theta wave in the power spectrum of EEG signals from 13 channels were used as features of the classifier built by linear discriminant analysis. The pilot experimental results from two participants in a driving simulator indicated that the model recognized emergency situations (e.g., pedestrian sudden occurrence) 400 ms earlier than the response of drivers with a hit rate of 76.4%, suggesting that the proposed method is feasible. The proposed method can be used as a complementary method to the existing ones based on detecting external objects with sensors.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种利用脑机接口对残障驾驶员进行脑电信号翻译的紧急情况识别方法。首先利用独立分量分析和信息熵对脑电信号进行滤波。然后将13个通道的脑电信号功率谱中θ波的幂和作为分类器的特征,通过线性判别分析建立分类器。两名参与者在驾驶模拟器上的试点实验结果表明,该模型比驾驶员的反应早400 ms识别紧急情况(如行人突然发生),命中率为76.4%,表明该方法是可行的。该方法可以作为基于传感器检测外部目标的现有方法的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using EEG to recognize emergency situations for brain-controlled vehicles
This paper proposes a novel method to recognize an emergency situation by translating EEG signals of a disabled driver while he or she uses a brain-machine interface without using his or her limbs to drive a vehicle. EEG signals were first filtered by independent component analysis along with information entropy. And then the sums of powers of theta wave in the power spectrum of EEG signals from 13 channels were used as features of the classifier built by linear discriminant analysis. The pilot experimental results from two participants in a driving simulator indicated that the model recognized emergency situations (e.g., pedestrian sudden occurrence) 400 ms earlier than the response of drivers with a hit rate of 76.4%, suggesting that the proposed method is feasible. The proposed method can be used as a complementary method to the existing ones based on detecting external objects with sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信