日志消息模板识别技术准确性评估指南

Zanis Ali Khan, Donghwan Shin, D. Bianculli, L. Briand
{"title":"日志消息模板识别技术准确性评估指南","authors":"Zanis Ali Khan, Donghwan Shin, D. Bianculli, L. Briand","doi":"10.1145/3510003.3510101","DOIUrl":null,"url":null,"abstract":"Log message template identification aims to convert raw logs containing free-formed log messages into structured logs to be processed by automated log-based analysis, such as anomaly detection and model inference. While many techniques have been proposed in the literature, only two recent studies provide a comprehensive evaluation and comparison of the techniques using an established benchmark composed of real-world logs. Nevertheless, we argue that both studies have the following issues: (1) they used different accuracy metrics without comparison between them, (2) some ground-truth (oracle) templates are incorrect, and (3) the accuracy evaluation results do not provide any information regarding incorrectly identified templates. In this paper, we address the above issues by providing three guidelines for assessing the accuracy of log template identification techniques: (1) use appropriate accuracy metrics, (2) perform oracle template correction, and (3) perform analysis of incorrect templates. We then assess the application of such guidelines through a comprehensive evaluation of 14 existing template identification techniques on the established benchmark logs. Results show very different insights than existing studies and in particular a much less optimistic outlook on existing techniques.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Guidelines for Assessing the Accuracy of Log Message Template Identification Techniques\",\"authors\":\"Zanis Ali Khan, Donghwan Shin, D. Bianculli, L. Briand\",\"doi\":\"10.1145/3510003.3510101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Log message template identification aims to convert raw logs containing free-formed log messages into structured logs to be processed by automated log-based analysis, such as anomaly detection and model inference. While many techniques have been proposed in the literature, only two recent studies provide a comprehensive evaluation and comparison of the techniques using an established benchmark composed of real-world logs. Nevertheless, we argue that both studies have the following issues: (1) they used different accuracy metrics without comparison between them, (2) some ground-truth (oracle) templates are incorrect, and (3) the accuracy evaluation results do not provide any information regarding incorrectly identified templates. In this paper, we address the above issues by providing three guidelines for assessing the accuracy of log template identification techniques: (1) use appropriate accuracy metrics, (2) perform oracle template correction, and (3) perform analysis of incorrect templates. We then assess the application of such guidelines through a comprehensive evaluation of 14 existing template identification techniques on the established benchmark logs. Results show very different insights than existing studies and in particular a much less optimistic outlook on existing techniques.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"324 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

日志消息模板识别的目的是将包含自由格式的日志消息的原始日志转换为结构化的日志,以便通过基于日志的自动化分析(如异常检测和模型推理)进行处理。虽然文献中提出了许多技术,但最近只有两项研究使用由真实日志组成的既定基准对这些技术进行了全面的评估和比较。然而,我们认为这两项研究都存在以下问题:(1)他们使用了不同的准确性指标,而没有对它们进行比较;(2)一些基础真理(oracle)模板是不正确的;(3)准确性评估结果没有提供任何关于错误识别模板的信息。在本文中,我们通过提供评估日志模板识别技术准确性的三个指导方针来解决上述问题:(1)使用适当的准确性度量,(2)执行oracle模板更正,(3)执行错误模板的分析。然后,我们通过在已建立的基准日志上对14种现有模板识别技术进行综合评估,来评估这些指导方针的应用。结果显示出与现有研究截然不同的见解,特别是对现有技术的看法不那么乐观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guidelines for Assessing the Accuracy of Log Message Template Identification Techniques
Log message template identification aims to convert raw logs containing free-formed log messages into structured logs to be processed by automated log-based analysis, such as anomaly detection and model inference. While many techniques have been proposed in the literature, only two recent studies provide a comprehensive evaluation and comparison of the techniques using an established benchmark composed of real-world logs. Nevertheless, we argue that both studies have the following issues: (1) they used different accuracy metrics without comparison between them, (2) some ground-truth (oracle) templates are incorrect, and (3) the accuracy evaluation results do not provide any information regarding incorrectly identified templates. In this paper, we address the above issues by providing three guidelines for assessing the accuracy of log template identification techniques: (1) use appropriate accuracy metrics, (2) perform oracle template correction, and (3) perform analysis of incorrect templates. We then assess the application of such guidelines through a comprehensive evaluation of 14 existing template identification techniques on the established benchmark logs. Results show very different insights than existing studies and in particular a much less optimistic outlook on existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信