Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen
{"title":"固有错误弹性神经形态系统的节能混合信号神经元","authors":"Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen","doi":"10.1109/ICRC.2017.8123656","DOIUrl":null,"url":null,"abstract":"This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems\",\"authors\":\"Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen\",\"doi\":\"10.1109/ICRC.2017.8123656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².\",\"PeriodicalId\":125114,\"journal\":{\"name\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2017.8123656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².