固有错误弹性神经形态系统的节能混合信号神经元

Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen
{"title":"固有错误弹性神经形态系统的节能混合信号神经元","authors":"Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen","doi":"10.1109/ICRC.2017.8123656","DOIUrl":null,"url":null,"abstract":"This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems\",\"authors\":\"Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen\",\"doi\":\"10.1109/ICRC.2017.8123656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².\",\"PeriodicalId\":125114,\"journal\":{\"name\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2017.8123656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了卷积神经网络(CNN)的混合信号神经元(MS-N)的设计和分析,并将其与数字神经元(Dig-N)在工作频率、功率和噪声方面的性能进行了比较。对于神经形态计算应用,采用65nm CMOS技术实现的MS-N的电路级能效比Dig-N高2-3个数量级,特别是在低频时,由于Dig-N中许多晶体管的高泄漏电流。利用CNN固有的误差弹性来处理MS-N的热噪声和闪烁噪声。采用内聚电路算法框架对MNIST和CIFAR-10数据集进行了系统级分析,结果表明,当带宽内的集成噪声功率为~ 1 μV²时,MNIST的最坏情况分类误差提高了3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信