结合惯性和视觉感知的网球动作识别

Ciarán Ó Conaire, Damien Connaghan, Philip Kelly, N. O’Connor, Mark Gaffney, J. Buckley
{"title":"结合惯性和视觉感知的网球动作识别","authors":"Ciarán Ó Conaire, Damien Connaghan, Philip Kelly, N. O’Connor, Mark Gaffney, J. Buckley","doi":"10.1145/1877868.1877882","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Combining inertial and visual sensing for human action recognition in tennis\",\"authors\":\"Ciarán Ó Conaire, Damien Connaghan, Philip Kelly, N. O’Connor, Mark Gaffney, J. Buckley\",\"doi\":\"10.1145/1877868.1877882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration\",\"PeriodicalId\":360789,\"journal\":{\"name\":\"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream\",\"volume\":\"436 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1877868.1877882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877868.1877882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文中,我们提出了一个框架,用于在比赛中自动提取网球击球的时间位置,并随后将这些击球分类为发球、正手或反手。我们采用低成本的视觉传感和低成本的惯性传感来实现这些目标,因此,如果在给定的捕获场景中两种模式都可用,则可以使用单一模式或采用两种分类策略的融合。这种灵活性允许框架适用于各种用户场景和硬件基础设施。我们提出的方法是使用从精英网球运动员那里获得的数据进行定量评估的。结果表明,无论输入模态配置如何,所提出的方法都具有极其准确的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining inertial and visual sensing for human action recognition in tennis
In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信