离散局部感应方程

Sampei Hirose, J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta
{"title":"离散局部感应方程","authors":"Sampei Hirose, J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta","doi":"10.1093/INTEGR/XYZ003","DOIUrl":null,"url":null,"abstract":"The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schr\\\"odinger equation. In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schr\\\"odinger equation. We also present explicit formulas for both smooth and discrete curves in terms of $\\tau$ functions of the two-component KP hierarchy.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discrete local induction equation\",\"authors\":\"Sampei Hirose, J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta\",\"doi\":\"10.1093/INTEGR/XYZ003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schr\\\\\\\"odinger equation. In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schr\\\\\\\"odinger equation. We also present explicit formulas for both smooth and discrete curves in terms of $\\\\tau$ functions of the two-component KP hierarchy.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/INTEGR/XYZ003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

局部感应方程或空间曲线上的双法向流动是一个众所周知的空间曲线变形模型,因为它描述了涡旋细丝的动力学,而复杂曲率由非线性Schr\ odinger方程控制。本文用离散非线性Schr\ odinger方程给出了它的离散模拟,即离散空间曲线的变形模型。我们也用二元KP层次的$\tau$函数给出了光滑曲线和离散曲线的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete local induction equation
The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schr\"odinger equation. In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schr\"odinger equation. We also present explicit formulas for both smooth and discrete curves in terms of $\tau$ functions of the two-component KP hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信