形状从语义分割通过几何rsamnyi发散

T. Koizumi, W. Smith
{"title":"形状从语义分割通过几何rsamnyi发散","authors":"T. Koizumi, W. Smith","doi":"10.1109/WACV48630.2021.00236","DOIUrl":null,"url":null,"abstract":"In this paper, we show how to estimate shape (restricted to a single object class via a 3D morphable model) using solely a semantic segmentation of a single 2D image. We propose a novel loss function based on a probabilistic, vertex-wise projection of the 3D model to the image plane. We represent both these projections and pixel labels as mixtures of Gaussians and compute the discrepancy between the two based on the geometric Rényi divergence. The resulting loss is differentiable and has a wide basin of convergence. We propose both classical, direct optimisation of this loss (\"analysis-by-synthesis\") and its use for training a parameter regression CNN. We show significant ad-vantages over existing segmentation losses used in state-of-the-art differentiable renderers Soft Rasterizer and Neural Mesh Renderer.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shape from semantic segmentation via the geometric Rényi divergence\",\"authors\":\"T. Koizumi, W. Smith\",\"doi\":\"10.1109/WACV48630.2021.00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show how to estimate shape (restricted to a single object class via a 3D morphable model) using solely a semantic segmentation of a single 2D image. We propose a novel loss function based on a probabilistic, vertex-wise projection of the 3D model to the image plane. We represent both these projections and pixel labels as mixtures of Gaussians and compute the discrepancy between the two based on the geometric Rényi divergence. The resulting loss is differentiable and has a wide basin of convergence. We propose both classical, direct optimisation of this loss (\\\"analysis-by-synthesis\\\") and its use for training a parameter regression CNN. We show significant ad-vantages over existing segmentation losses used in state-of-the-art differentiable renderers Soft Rasterizer and Neural Mesh Renderer.\",\"PeriodicalId\":236300,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV48630.2021.00236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们展示了如何仅使用单个2D图像的语义分割来估计形状(通过3D变形模型限制为单个对象类)。我们提出了一种基于三维模型到图像平面的概率、顶点方向投影的新型损失函数。我们将这些投影和像素标签都表示为高斯分布的混合物,并根据几何r尼散度计算两者之间的差异。所得到的损失是可微的,并且具有广泛的收敛范围。我们建议对这种损失进行经典的直接优化(“综合分析”),并将其用于训练参数回归CNN。我们展示了在最先进的可微分渲染器Soft Rasterizer和Neural Mesh Renderer中使用的现有分割损失的显着优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape from semantic segmentation via the geometric Rényi divergence
In this paper, we show how to estimate shape (restricted to a single object class via a 3D morphable model) using solely a semantic segmentation of a single 2D image. We propose a novel loss function based on a probabilistic, vertex-wise projection of the 3D model to the image plane. We represent both these projections and pixel labels as mixtures of Gaussians and compute the discrepancy between the two based on the geometric Rényi divergence. The resulting loss is differentiable and has a wide basin of convergence. We propose both classical, direct optimisation of this loss ("analysis-by-synthesis") and its use for training a parameter regression CNN. We show significant ad-vantages over existing segmentation losses used in state-of-the-art differentiable renderers Soft Rasterizer and Neural Mesh Renderer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信