应用田口方法和DoE的人工神经网络稳健设计

J. Ortiz-Rodríguez, M. R. Martinez-Blanco, H. Vega-Carrillo
{"title":"应用田口方法和DoE的人工神经网络稳健设计","authors":"J. Ortiz-Rodríguez, M. R. Martinez-Blanco, H. Vega-Carrillo","doi":"10.1109/CERMA.2006.83","DOIUrl":null,"url":null,"abstract":"The integration of artificial neural networks and optimization provides a tool for designing robust network parameters and improving their performance. The Taguchi method offers considerable benefits in time and accuracy when is compared with the conventional trial and error neural network design approach. This work is concerned with the robust design of multilayer feedforward neural networks trained by backpropagation algorithm and develops a systematic and experimental strategy which emphasizes simultaneous optimization artificial neural network's parameters optimization under various noise conditions. We make a comparison among this method and conventional training methods. The attention is drawing on the advantages on Taguchi methods which offer potential benefits in evaluating the network behavior","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Robust Design of Artificial Neural Networks Applying the Taguchi methodology and DoE\",\"authors\":\"J. Ortiz-Rodríguez, M. R. Martinez-Blanco, H. Vega-Carrillo\",\"doi\":\"10.1109/CERMA.2006.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of artificial neural networks and optimization provides a tool for designing robust network parameters and improving their performance. The Taguchi method offers considerable benefits in time and accuracy when is compared with the conventional trial and error neural network design approach. This work is concerned with the robust design of multilayer feedforward neural networks trained by backpropagation algorithm and develops a systematic and experimental strategy which emphasizes simultaneous optimization artificial neural network's parameters optimization under various noise conditions. We make a comparison among this method and conventional training methods. The attention is drawing on the advantages on Taguchi methods which offer potential benefits in evaluating the network behavior\",\"PeriodicalId\":179210,\"journal\":{\"name\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2006.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

人工神经网络与优化的结合为设计鲁棒网络参数和提高网络性能提供了工具。与传统的试错神经网络设计方法相比,田口方法在时间和精度上都有很大的优势。本文研究了用反向传播算法训练的多层前馈神经网络的鲁棒性设计,并提出了一种系统的实验策略,强调在各种噪声条件下同时优化人工神经网络的参数优化。并将该方法与传统训练方法进行了比较。田口方法在评估网络行为方面具有潜在的优势,值得关注
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Design of Artificial Neural Networks Applying the Taguchi methodology and DoE
The integration of artificial neural networks and optimization provides a tool for designing robust network parameters and improving their performance. The Taguchi method offers considerable benefits in time and accuracy when is compared with the conventional trial and error neural network design approach. This work is concerned with the robust design of multilayer feedforward neural networks trained by backpropagation algorithm and develops a systematic and experimental strategy which emphasizes simultaneous optimization artificial neural network's parameters optimization under various noise conditions. We make a comparison among this method and conventional training methods. The attention is drawing on the advantages on Taguchi methods which offer potential benefits in evaluating the network behavior
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信