内聚:加速器的混合内存模型

J. H. Kelm, Daniel R. Johnson, W. Tuohy, S. Lumetta, Sanjay J. Patel
{"title":"内聚:加速器的混合内存模型","authors":"J. H. Kelm, Daniel R. Johnson, W. Tuohy, S. Lumetta, Sanjay J. Patel","doi":"10.1145/1815961.1816019","DOIUrl":null,"url":null,"abstract":"Two broad classes of memory models are available today: models with hardware cache coherence, used in conventional chip multiprocessors, and models that rely upon software to manage coherence, found in compute accelerators. In some systems, both types of models are supported using disjoint address spaces and/or physical memories. In this paper we present Cohesion, a hybrid memory model that enables fine-grained temporal reassignment of data between hardware-managed and software-managed coherence domains, allowing a system to support both. Cohesion can be used to dynamically adapt to the sharing needs of both applications and runtimes. Cohesion requires neither copy operations nor multiple address spaces. Cohesion offers the benefits of reduced message traffic and on-die directory overhead when software-managed coherence can be used and the advantages of hardware coherence for cases in which software-managed coherence is impractical. We demonstrate our protocol using a hierarchical, cached 1024-core processor with a single address space that supports both software-enforced coherence and a directory-based hardware coherence protocol. Relative to an optimistic, hardware-coherent baseline, a realizable Cohesion design achieves competitive performance with a 2× reduction in message traffic, 2.1× reduction in directory utilization, and greater robustness to on-die directory capacity.","PeriodicalId":132033,"journal":{"name":"Proceedings of the 37th annual international symposium on Computer architecture","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Cohesion: a hybrid memory model for accelerators\",\"authors\":\"J. H. Kelm, Daniel R. Johnson, W. Tuohy, S. Lumetta, Sanjay J. Patel\",\"doi\":\"10.1145/1815961.1816019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two broad classes of memory models are available today: models with hardware cache coherence, used in conventional chip multiprocessors, and models that rely upon software to manage coherence, found in compute accelerators. In some systems, both types of models are supported using disjoint address spaces and/or physical memories. In this paper we present Cohesion, a hybrid memory model that enables fine-grained temporal reassignment of data between hardware-managed and software-managed coherence domains, allowing a system to support both. Cohesion can be used to dynamically adapt to the sharing needs of both applications and runtimes. Cohesion requires neither copy operations nor multiple address spaces. Cohesion offers the benefits of reduced message traffic and on-die directory overhead when software-managed coherence can be used and the advantages of hardware coherence for cases in which software-managed coherence is impractical. We demonstrate our protocol using a hierarchical, cached 1024-core processor with a single address space that supports both software-enforced coherence and a directory-based hardware coherence protocol. Relative to an optimistic, hardware-coherent baseline, a realizable Cohesion design achieves competitive performance with a 2× reduction in message traffic, 2.1× reduction in directory utilization, and greater robustness to on-die directory capacity.\",\"PeriodicalId\":132033,\"journal\":{\"name\":\"Proceedings of the 37th annual international symposium on Computer architecture\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th annual international symposium on Computer architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1815961.1816019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th annual international symposium on Computer architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1815961.1816019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

目前可用的内存模型有两大类:一种是使用硬件缓存一致性的模型,用于传统的芯片多处理器;另一种是依靠软件来管理一致性的模型,用于计算加速器。在某些系统中,两种类型的模型都使用不相交的地址空间和/或物理内存来支持。在本文中,我们提出了内聚,这是一种混合内存模型,可以在硬件管理和软件管理的相干域之间对数据进行细粒度的时间重新分配,从而允许系统同时支持两者。内聚可以用来动态地适应应用程序和运行时的共享需求。内聚既不需要复制操作,也不需要多个地址空间。当可以使用软件管理的一致性时,内聚提供了减少消息流量和本地目录开销的好处,而在软件管理的一致性不切实际的情况下,则提供了硬件一致性的优势。我们使用一个分层的、缓存的1024核处理器来演示我们的协议,该处理器具有单个地址空间,支持软件强制一致性和基于目录的硬件一致性协议。相对于乐观的、硬件一致的基线,可实现的内聚设计实现了具有竞争力的性能,消息流量减少了2倍,目录利用率减少了2.1倍,并且对本地目录容量具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohesion: a hybrid memory model for accelerators
Two broad classes of memory models are available today: models with hardware cache coherence, used in conventional chip multiprocessors, and models that rely upon software to manage coherence, found in compute accelerators. In some systems, both types of models are supported using disjoint address spaces and/or physical memories. In this paper we present Cohesion, a hybrid memory model that enables fine-grained temporal reassignment of data between hardware-managed and software-managed coherence domains, allowing a system to support both. Cohesion can be used to dynamically adapt to the sharing needs of both applications and runtimes. Cohesion requires neither copy operations nor multiple address spaces. Cohesion offers the benefits of reduced message traffic and on-die directory overhead when software-managed coherence can be used and the advantages of hardware coherence for cases in which software-managed coherence is impractical. We demonstrate our protocol using a hierarchical, cached 1024-core processor with a single address space that supports both software-enforced coherence and a directory-based hardware coherence protocol. Relative to an optimistic, hardware-coherent baseline, a realizable Cohesion design achieves competitive performance with a 2× reduction in message traffic, 2.1× reduction in directory utilization, and greater robustness to on-die directory capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信