{"title":"基于编译器辅助虚拟设计平台的AI SoC优化","authors":"Chih-Tsun Huang, Juin-Ming Lu, Yao-Hua Chen, Ming-Chih Tung, Shih-Chieh Chang","doi":"10.1145/3569052.3578930","DOIUrl":null,"url":null,"abstract":"As deep learning keeps evolving dramatically with rapidly increasing complexity, the demand for efficient hardware accelerators has become vital. However, the lack of software/hardware co-development toolchains makes designing AI SoCs (artificial intelligent system-on-chips) considerably challenging. This paper presents a compiler-assisted virtual platform to facilitate the development of AI SoCs from the early design stage. The electronic system-level design platform provides rapid functional verification and performance/energy analysis. Cooperating with the neural network compiler, AI software and hardware can be co-optimized on the proposed virtual design platform. Our Deep Inference Processor is also utilized on the virtual design platform to demonstrate the effectiveness of the architectural evaluation and exploration methodology.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of AI SoC with Compiler-assisted Virtual Design Platform\",\"authors\":\"Chih-Tsun Huang, Juin-Ming Lu, Yao-Hua Chen, Ming-Chih Tung, Shih-Chieh Chang\",\"doi\":\"10.1145/3569052.3578930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As deep learning keeps evolving dramatically with rapidly increasing complexity, the demand for efficient hardware accelerators has become vital. However, the lack of software/hardware co-development toolchains makes designing AI SoCs (artificial intelligent system-on-chips) considerably challenging. This paper presents a compiler-assisted virtual platform to facilitate the development of AI SoCs from the early design stage. The electronic system-level design platform provides rapid functional verification and performance/energy analysis. Cooperating with the neural network compiler, AI software and hardware can be co-optimized on the proposed virtual design platform. Our Deep Inference Processor is also utilized on the virtual design platform to demonstrate the effectiveness of the architectural evaluation and exploration methodology.\",\"PeriodicalId\":169581,\"journal\":{\"name\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569052.3578930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of AI SoC with Compiler-assisted Virtual Design Platform
As deep learning keeps evolving dramatically with rapidly increasing complexity, the demand for efficient hardware accelerators has become vital. However, the lack of software/hardware co-development toolchains makes designing AI SoCs (artificial intelligent system-on-chips) considerably challenging. This paper presents a compiler-assisted virtual platform to facilitate the development of AI SoCs from the early design stage. The electronic system-level design platform provides rapid functional verification and performance/energy analysis. Cooperating with the neural network compiler, AI software and hardware can be co-optimized on the proposed virtual design platform. Our Deep Inference Processor is also utilized on the virtual design platform to demonstrate the effectiveness of the architectural evaluation and exploration methodology.