{"title":"用于多计算机的体系结构工作台","authors":"A. Pimentel, L. Hertzberger","doi":"10.1109/IPPS.1997.580854","DOIUrl":null,"url":null,"abstract":"The large design space of modern computer architectures calls for performance modelling tools to facilitate the evaluation of different alternatives. In this paper we give an overview of the Mermaid multicomputer simulation environment. This environment allows the evaluation of a wide range of architectural design tradeoffs while delivering reasonable simulation performance. To achieve this, simulation takes place at a level of abstract machine instructions rather than at the level of real instructions. Moreover, a less detailed mode of simulation is also provided. So when accuracy is not the primary objective, this simulation mode can yield high simulation efficiency. As a consequence, Mermaid makes both fast prototyping and accurate evaluation of multicomputer architectures feasible.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An architecture workbench for multicomputers\",\"authors\":\"A. Pimentel, L. Hertzberger\",\"doi\":\"10.1109/IPPS.1997.580854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large design space of modern computer architectures calls for performance modelling tools to facilitate the evaluation of different alternatives. In this paper we give an overview of the Mermaid multicomputer simulation environment. This environment allows the evaluation of a wide range of architectural design tradeoffs while delivering reasonable simulation performance. To achieve this, simulation takes place at a level of abstract machine instructions rather than at the level of real instructions. Moreover, a less detailed mode of simulation is also provided. So when accuracy is not the primary objective, this simulation mode can yield high simulation efficiency. As a consequence, Mermaid makes both fast prototyping and accurate evaluation of multicomputer architectures feasible.\",\"PeriodicalId\":145892,\"journal\":{\"name\":\"Proceedings 11th International Parallel Processing Symposium\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1997.580854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The large design space of modern computer architectures calls for performance modelling tools to facilitate the evaluation of different alternatives. In this paper we give an overview of the Mermaid multicomputer simulation environment. This environment allows the evaluation of a wide range of architectural design tradeoffs while delivering reasonable simulation performance. To achieve this, simulation takes place at a level of abstract machine instructions rather than at the level of real instructions. Moreover, a less detailed mode of simulation is also provided. So when accuracy is not the primary objective, this simulation mode can yield high simulation efficiency. As a consequence, Mermaid makes both fast prototyping and accurate evaluation of multicomputer architectures feasible.