基于EEG的梯度增强机器参与者独立情绪分类

Sagar Aggarwal, Luv Aggarwal, Manshubh Singh Rihal, Swati Aggarwal
{"title":"基于EEG的梯度增强机器参与者独立情绪分类","authors":"Sagar Aggarwal, Luv Aggarwal, Manshubh Singh Rihal, Swati Aggarwal","doi":"10.1109/IADCC.2018.8692106","DOIUrl":null,"url":null,"abstract":"Analysis of EEG (Electroencephalography) signals provides an alternative ingenious approach towards Emotion recognition. Nowadays, Gradient Boosting Machines (GBMs) have emerged as state-of-the-art supervised classification techniques used for robust modeling of various standard machine learning problems. In this paper, two GBM’s (XGBoost and LightGBM) were used for emotion classification on DEAP Dataset. Furthermore, a participant independent model was fabricated by excluding participant number from features. The proposed approach performed well with high accuracies and faster training speed.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"EEG Based Participant Independent Emotion Classification using Gradient Boosting Machines\",\"authors\":\"Sagar Aggarwal, Luv Aggarwal, Manshubh Singh Rihal, Swati Aggarwal\",\"doi\":\"10.1109/IADCC.2018.8692106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of EEG (Electroencephalography) signals provides an alternative ingenious approach towards Emotion recognition. Nowadays, Gradient Boosting Machines (GBMs) have emerged as state-of-the-art supervised classification techniques used for robust modeling of various standard machine learning problems. In this paper, two GBM’s (XGBoost and LightGBM) were used for emotion classification on DEAP Dataset. Furthermore, a participant independent model was fabricated by excluding participant number from features. The proposed approach performed well with high accuracies and faster training speed.\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对脑电图信号的分析为情感识别提供了另一种巧妙的方法。如今,梯度增强机(GBMs)已经成为最先进的监督分类技术,用于各种标准机器学习问题的鲁棒建模。本文采用两种GBM (XGBoost和LightGBM)对DEAP数据集进行情感分类。此外,通过从特征中剔除参与者数量,构建了参与者独立模型。该方法具有精度高、训练速度快等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG Based Participant Independent Emotion Classification using Gradient Boosting Machines
Analysis of EEG (Electroencephalography) signals provides an alternative ingenious approach towards Emotion recognition. Nowadays, Gradient Boosting Machines (GBMs) have emerged as state-of-the-art supervised classification techniques used for robust modeling of various standard machine learning problems. In this paper, two GBM’s (XGBoost and LightGBM) were used for emotion classification on DEAP Dataset. Furthermore, a participant independent model was fabricated by excluding participant number from features. The proposed approach performed well with high accuracies and faster training speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信