生长域上指数非线性反应-扩散系统的整体存在性、渐近稳定性及数值模拟

Redouane Douaifia, S. Abdelmalek, B. Rebiai
{"title":"生长域上指数非线性反应-扩散系统的整体存在性、渐近稳定性及数值模拟","authors":"Redouane Douaifia, S. Abdelmalek, B. Rebiai","doi":"10.1109/ICRAMI52622.2021.9585915","DOIUrl":null,"url":null,"abstract":"This paper primarily seeks to extend the results of Rebiai and Benachour [10] on the global existence, uniqueness, uniform boundedness, and the asymptotic behavior of solutions for a weakly coupled reaction-diffusion systems with exponential nonlinearity on a growing domain with an isotropic growth, the desired results are obtained by using Lyapunov functions’ method. The theoretical findings are supported and affirmed by numerical simulation.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence, Asymptotic Stability and Numerical Simulation for Reaction-Diffusion Systems with Exponential Nonlinearity on Growing Domains\",\"authors\":\"Redouane Douaifia, S. Abdelmalek, B. Rebiai\",\"doi\":\"10.1109/ICRAMI52622.2021.9585915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper primarily seeks to extend the results of Rebiai and Benachour [10] on the global existence, uniqueness, uniform boundedness, and the asymptotic behavior of solutions for a weakly coupled reaction-diffusion systems with exponential nonlinearity on a growing domain with an isotropic growth, the desired results are obtained by using Lyapunov functions’ method. The theoretical findings are supported and affirmed by numerical simulation.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在各向异性增长区域上推广了Rebiai和Benachour[10]关于指数非线性弱耦合反应扩散系统解的整体存在性、唯一性、一致有界性和渐近性的结果,并利用Lyapunov函数方法得到了预期结果。数值模拟结果支持和肯定了理论研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence, Asymptotic Stability and Numerical Simulation for Reaction-Diffusion Systems with Exponential Nonlinearity on Growing Domains
This paper primarily seeks to extend the results of Rebiai and Benachour [10] on the global existence, uniqueness, uniform boundedness, and the asymptotic behavior of solutions for a weakly coupled reaction-diffusion systems with exponential nonlinearity on a growing domain with an isotropic growth, the desired results are obtained by using Lyapunov functions’ method. The theoretical findings are supported and affirmed by numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信