基于形态学运算和模糊聚类的超声图像分割

Haihua Liu, C. Xie, Zhouhui Chen, Yi Lei
{"title":"基于形态学运算和模糊聚类的超声图像分割","authors":"Haihua Liu, C. Xie, Zhouhui Chen, Yi Lei","doi":"10.1109/DELTA.2006.78","DOIUrl":null,"url":null,"abstract":"This paper presents a system for segmentation of ultrasound images. The system consists of two parts: local contrast enhancement and segmentation. The scheme for enhancing local contrast of images without speckle noise emphasis based on multiscale morphology is presented in the system. The intensity values of the scale-specific features of the image extracted using multiscale transformation are modified so as to enhance local contrast and suppress noise. Then, a new algorithm, called an alternative fuzzy c-mean (AFCM), is used for segmentation of ultrasound image. The unsupervised segmentation algorithm can help further to reduce the ultrasound imaging noise effects originating from the structures. We demonstrate effectiveness of the system for ultrasound image segmentation in experiments.","PeriodicalId":439448,"journal":{"name":"Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Segmentation of ultrasound image based on morphological operation and fuzzy clustering\",\"authors\":\"Haihua Liu, C. Xie, Zhouhui Chen, Yi Lei\",\"doi\":\"10.1109/DELTA.2006.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system for segmentation of ultrasound images. The system consists of two parts: local contrast enhancement and segmentation. The scheme for enhancing local contrast of images without speckle noise emphasis based on multiscale morphology is presented in the system. The intensity values of the scale-specific features of the image extracted using multiscale transformation are modified so as to enhance local contrast and suppress noise. Then, a new algorithm, called an alternative fuzzy c-mean (AFCM), is used for segmentation of ultrasound image. The unsupervised segmentation algorithm can help further to reduce the ultrasound imaging noise effects originating from the structures. We demonstrate effectiveness of the system for ultrasound image segmentation in experiments.\",\"PeriodicalId\":439448,\"journal\":{\"name\":\"Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DELTA.2006.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELTA.2006.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种超声图像分割系统。该系统由局部对比度增强和图像分割两部分组成。提出了一种基于多尺度形态学的无斑点噪声增强图像局部对比度的方法。对多尺度变换提取的图像尺度特征的强度值进行修改,增强局部对比度,抑制噪声。在此基础上,提出了一种新的模糊c均值分割算法(AFCM)。无监督分割算法可以进一步降低结构对超声成像的噪声影响。实验证明了该系统对超声图像分割的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of ultrasound image based on morphological operation and fuzzy clustering
This paper presents a system for segmentation of ultrasound images. The system consists of two parts: local contrast enhancement and segmentation. The scheme for enhancing local contrast of images without speckle noise emphasis based on multiscale morphology is presented in the system. The intensity values of the scale-specific features of the image extracted using multiscale transformation are modified so as to enhance local contrast and suppress noise. Then, a new algorithm, called an alternative fuzzy c-mean (AFCM), is used for segmentation of ultrasound image. The unsupervised segmentation algorithm can help further to reduce the ultrasound imaging noise effects originating from the structures. We demonstrate effectiveness of the system for ultrasound image segmentation in experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信