基于隐马尔可夫模型的鲁棒孤立词语音识别

E. A. Martin, R. Lippmann, D. Paul
{"title":"基于隐马尔可夫模型的鲁棒孤立词语音识别","authors":"E. A. Martin, R. Lippmann, D. Paul","doi":"10.1109/ICASSP.1988.196507","DOIUrl":null,"url":null,"abstract":"The authors describe an HMM-based isolated-word recognition system that dynamically adapts word model parameters to new speakers and to stress-induced speech variations. During recognition all input tokens presented to the system can be used to augment the current word model parameters. New tokens can be weighted so that adaptation simply increases the size of the training set, or tracks systematic changes by exponentially weighting all previously seen data. This system was tested on the 35-word 10710 token Lincoln stressed speech data base. Speaker adaptation experiments produced error rates equivalent to speaker-trained systems after the presentation of only a single new token per vocabulary word. Stress condition adaptation experiments produced results comparable to multistyle-trained systems after the presentation of several new tokens per vocabulary word.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Dynamic adaptation of Hidden Markov models for robust isolated-word speech recognition\",\"authors\":\"E. A. Martin, R. Lippmann, D. Paul\",\"doi\":\"10.1109/ICASSP.1988.196507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe an HMM-based isolated-word recognition system that dynamically adapts word model parameters to new speakers and to stress-induced speech variations. During recognition all input tokens presented to the system can be used to augment the current word model parameters. New tokens can be weighted so that adaptation simply increases the size of the training set, or tracks systematic changes by exponentially weighting all previously seen data. This system was tested on the 35-word 10710 token Lincoln stressed speech data base. Speaker adaptation experiments produced error rates equivalent to speaker-trained systems after the presentation of only a single new token per vocabulary word. Stress condition adaptation experiments produced results comparable to multistyle-trained systems after the presentation of several new tokens per vocabulary word.<<ETX>>\",\"PeriodicalId\":448544,\"journal\":{\"name\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1988.196507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

作者描述了一个基于hmm的孤立词识别系统,该系统可以动态地适应单词模型参数以适应新的说话者和应力引起的语音变化。在识别过程中,所有提供给系统的输入标记都可以用来增加当前的单词模型参数。可以对新的标记进行加权,这样适应就可以简单地增加训练集的大小,或者通过指数加权所有以前看到的数据来跟踪系统变化。该系统在35字的10710代币林肯强调语音数据库上进行了测试。说话人适应实验产生的错误率相当于说话人训练系统在每个词汇表单词只呈现一个新标记后的错误率。压力条件适应实验产生的结果与每个词汇单词呈现几个新标记后的多风格训练系统相当
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic adaptation of Hidden Markov models for robust isolated-word speech recognition
The authors describe an HMM-based isolated-word recognition system that dynamically adapts word model parameters to new speakers and to stress-induced speech variations. During recognition all input tokens presented to the system can be used to augment the current word model parameters. New tokens can be weighted so that adaptation simply increases the size of the training set, or tracks systematic changes by exponentially weighting all previously seen data. This system was tested on the 35-word 10710 token Lincoln stressed speech data base. Speaker adaptation experiments produced error rates equivalent to speaker-trained systems after the presentation of only a single new token per vocabulary word. Stress condition adaptation experiments produced results comparable to multistyle-trained systems after the presentation of several new tokens per vocabulary word.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信