离散时间p型迭代学习控制单调收敛性的观察

K. Moore
{"title":"离散时间p型迭代学习控制单调收敛性的观察","authors":"K. Moore","doi":"10.1109/ISIC.2001.971482","DOIUrl":null,"url":null,"abstract":"In this note we make an observation about the equivalence between the necessary and sufficient condition for convergence and the sufficient condition for monotonic convergence in discrete-time, P-type iterative learning control. Specifically, requirements on the plant are given so that convergence of the learning algorithm ensures monotonic convergence. In particular, for the case where one minus the learning gain times the first Markov parameter is positive, but less than one, it is shown that if the first non-zero Markov parameter of the system has a larger magnitude than the sum of the magnitudes of the next N-1 Markov parameters, then convergence of the learning control algorithm implies monotonic convergence, independent of the learning gain. For the case where one minus the learning gain times the first Markov parameter is negative, but greater than negative one, a condition depending on the learning gain is derived whereby learning convergences also implies monotonic convergence.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"An observation about monotonic convergence in discrete-time, P-type iterative learning control\",\"authors\":\"K. Moore\",\"doi\":\"10.1109/ISIC.2001.971482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we make an observation about the equivalence between the necessary and sufficient condition for convergence and the sufficient condition for monotonic convergence in discrete-time, P-type iterative learning control. Specifically, requirements on the plant are given so that convergence of the learning algorithm ensures monotonic convergence. In particular, for the case where one minus the learning gain times the first Markov parameter is positive, but less than one, it is shown that if the first non-zero Markov parameter of the system has a larger magnitude than the sum of the magnitudes of the next N-1 Markov parameters, then convergence of the learning control algorithm implies monotonic convergence, independent of the learning gain. For the case where one minus the learning gain times the first Markov parameter is negative, but greater than negative one, a condition depending on the learning gain is derived whereby learning convergences also implies monotonic convergence.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

本文观察了离散时间p型迭代学习控制收敛的充分必要条件和单调收敛的充分条件之间的等价性。具体地说,给出了对对象的要求,使学习算法的收敛性保证单调收敛。特别是,对于1减去学习增益乘以第一个马尔可夫参数为正,但小于1的情况,表明如果系统的第一个非零马尔可夫参数的大小大于下N-1个马尔可夫参数的大小之和,则学习控制算法的收敛意味着单调收敛,与学习增益无关。对于1减去学习增益乘以第一个马尔可夫参数为负,但大于负1的情况,导出了一个依赖于学习增益的条件,其中学习收敛也意味着单调收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An observation about monotonic convergence in discrete-time, P-type iterative learning control
In this note we make an observation about the equivalence between the necessary and sufficient condition for convergence and the sufficient condition for monotonic convergence in discrete-time, P-type iterative learning control. Specifically, requirements on the plant are given so that convergence of the learning algorithm ensures monotonic convergence. In particular, for the case where one minus the learning gain times the first Markov parameter is positive, but less than one, it is shown that if the first non-zero Markov parameter of the system has a larger magnitude than the sum of the magnitudes of the next N-1 Markov parameters, then convergence of the learning control algorithm implies monotonic convergence, independent of the learning gain. For the case where one minus the learning gain times the first Markov parameter is negative, but greater than negative one, a condition depending on the learning gain is derived whereby learning convergences also implies monotonic convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信