{"title":"deep锐化:基于深度学习的冷冻电子显微镜三维重建图锐化","authors":"Mona Zehni, M. Do, Zhizhen Zhao","doi":"10.1109/ISBIWorkshops50223.2020.9153369","DOIUrl":null,"url":null,"abstract":"Cryo-electron microscopy (cryo-EM) has proven to be a promising tool for recovering the 3D structure of biological macromolecules. The cryo-EM map which is reconstructed from a large set of projection images, is then used for recovering the atomic model of the molecule. The accuracy of the fitted atomic model depends on the quality of the cryo-EM map. Due to current limitations during imaging or reconstruction process, the reconstructed map usually lacks interpretability and requires further quality enhancement post-processing. In this work, we present a data-driven solution to improve the quality of low-resolution cryo-EM maps. For this purpose, we generate a synthetic dataset generated from deposited protein structures in protein data bank (PDB). This dataset includes low and high-resolution map pairs in multiple resolutions. This dataset is then used to train a fully convolutional network. Our results justify the potential of our method in successfully recovering details for simulated and experimental maps. Moreover, compared to state-of-the-art cryo-EM map sharpening methods, our approach not only provides good results but is also computationally efficient.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deepsharpen: Deep-Learning Based Sharpening Of 3D Reconstruction Map From Cryo-Electron Microscopy\",\"authors\":\"Mona Zehni, M. Do, Zhizhen Zhao\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryo-electron microscopy (cryo-EM) has proven to be a promising tool for recovering the 3D structure of biological macromolecules. The cryo-EM map which is reconstructed from a large set of projection images, is then used for recovering the atomic model of the molecule. The accuracy of the fitted atomic model depends on the quality of the cryo-EM map. Due to current limitations during imaging or reconstruction process, the reconstructed map usually lacks interpretability and requires further quality enhancement post-processing. In this work, we present a data-driven solution to improve the quality of low-resolution cryo-EM maps. For this purpose, we generate a synthetic dataset generated from deposited protein structures in protein data bank (PDB). This dataset includes low and high-resolution map pairs in multiple resolutions. This dataset is then used to train a fully convolutional network. Our results justify the potential of our method in successfully recovering details for simulated and experimental maps. Moreover, compared to state-of-the-art cryo-EM map sharpening methods, our approach not only provides good results but is also computationally efficient.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deepsharpen: Deep-Learning Based Sharpening Of 3D Reconstruction Map From Cryo-Electron Microscopy
Cryo-electron microscopy (cryo-EM) has proven to be a promising tool for recovering the 3D structure of biological macromolecules. The cryo-EM map which is reconstructed from a large set of projection images, is then used for recovering the atomic model of the molecule. The accuracy of the fitted atomic model depends on the quality of the cryo-EM map. Due to current limitations during imaging or reconstruction process, the reconstructed map usually lacks interpretability and requires further quality enhancement post-processing. In this work, we present a data-driven solution to improve the quality of low-resolution cryo-EM maps. For this purpose, we generate a synthetic dataset generated from deposited protein structures in protein data bank (PDB). This dataset includes low and high-resolution map pairs in multiple resolutions. This dataset is then used to train a fully convolutional network. Our results justify the potential of our method in successfully recovering details for simulated and experimental maps. Moreover, compared to state-of-the-art cryo-EM map sharpening methods, our approach not only provides good results but is also computationally efficient.