{"title":"基于主体的计算设计的两层语法方法","authors":"Christopher McComb, J. Cagan, L. Puentes","doi":"10.1115/DETC2018-85648","DOIUrl":null,"url":null,"abstract":"Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Two-Tiered Grammatical Approach for Agent-Based Computational Design\",\"authors\":\"Christopher McComb, J. Cagan, L. Puentes\",\"doi\":\"10.1115/DETC2018-85648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-Tiered Grammatical Approach for Agent-Based Computational Design
Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.