{"title":"时间Petri网模型单步和最大步语义实时调度问题分析","authors":"R. Freitas, R. Barreto, P. Maciel","doi":"10.1109/SBESC.2013.45","DOIUrl":null,"url":null,"abstract":"One of the most intricate problem in the synthesis of hard real-time systems is the scheduling. There are two general approaches for scheduling tasks in real-time systems: runtime or pre-runtime scheduling. However, there are situations where the runtime approach does not find a feasible schedule even if such a schedule exists. This situation generally occurs when the task model imposes arbitrary intertask relations, such as precedence and exclusion relations. However, finding a feasible schedule is not trivial, because this problem is NP-Hard in its general form. The approach proposed in this paper models real-time systems using time Petri nets, and finds a pre-runtime scheduling, provided that one exists, using a depth-first search method adopting two kinds of firing rules: single and maximal step semantics. The main aim of this paper is to compare both semantics in the context of embedded hard real-time pre-runtime scheduling.","PeriodicalId":359419,"journal":{"name":"2013 III Brazilian Symposium on Computing Systems Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Real-Time Scheduling Problems by Single Step and Maximal Step Semantics for Time Petri Net Models\",\"authors\":\"R. Freitas, R. Barreto, P. Maciel\",\"doi\":\"10.1109/SBESC.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most intricate problem in the synthesis of hard real-time systems is the scheduling. There are two general approaches for scheduling tasks in real-time systems: runtime or pre-runtime scheduling. However, there are situations where the runtime approach does not find a feasible schedule even if such a schedule exists. This situation generally occurs when the task model imposes arbitrary intertask relations, such as precedence and exclusion relations. However, finding a feasible schedule is not trivial, because this problem is NP-Hard in its general form. The approach proposed in this paper models real-time systems using time Petri nets, and finds a pre-runtime scheduling, provided that one exists, using a depth-first search method adopting two kinds of firing rules: single and maximal step semantics. The main aim of this paper is to compare both semantics in the context of embedded hard real-time pre-runtime scheduling.\",\"PeriodicalId\":359419,\"journal\":{\"name\":\"2013 III Brazilian Symposium on Computing Systems Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 III Brazilian Symposium on Computing Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBESC.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 III Brazilian Symposium on Computing Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBESC.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Real-Time Scheduling Problems by Single Step and Maximal Step Semantics for Time Petri Net Models
One of the most intricate problem in the synthesis of hard real-time systems is the scheduling. There are two general approaches for scheduling tasks in real-time systems: runtime or pre-runtime scheduling. However, there are situations where the runtime approach does not find a feasible schedule even if such a schedule exists. This situation generally occurs when the task model imposes arbitrary intertask relations, such as precedence and exclusion relations. However, finding a feasible schedule is not trivial, because this problem is NP-Hard in its general form. The approach proposed in this paper models real-time systems using time Petri nets, and finds a pre-runtime scheduling, provided that one exists, using a depth-first search method adopting two kinds of firing rules: single and maximal step semantics. The main aim of this paper is to compare both semantics in the context of embedded hard real-time pre-runtime scheduling.