分数阶超混沌系统的滑模控制

Jing Bai, Yongguang Yu
{"title":"分数阶超混沌系统的滑模控制","authors":"Jing Bai, Yongguang Yu","doi":"10.1109/IWCFTA.2010.86","DOIUrl":null,"url":null,"abstract":"In this paper, active sliding mode controllers are designed to realize the control and synchronization of fractional-order hyper chaotic systems. Based on stability theorems of fractional calculus, the stability analysis of the proposed method is performed. Finally, three numerical simulations are presented to show the effectiveness of the obtained results. The simulations are all implemented using predictor-corrector method to solve the fractional differential equations.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sliding Mode Control of Fractional-order Hyperchaotic Systems\",\"authors\":\"Jing Bai, Yongguang Yu\",\"doi\":\"10.1109/IWCFTA.2010.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, active sliding mode controllers are designed to realize the control and synchronization of fractional-order hyper chaotic systems. Based on stability theorems of fractional calculus, the stability analysis of the proposed method is performed. Finally, three numerical simulations are presented to show the effectiveness of the obtained results. The simulations are all implemented using predictor-corrector method to solve the fractional differential equations.\",\"PeriodicalId\":157339,\"journal\":{\"name\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2010.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文设计了有源滑模控制器来实现分数阶超混沌系统的控制与同步。基于分数阶微积分的稳定性定理,对该方法进行了稳定性分析。最后,通过三个数值仿真验证了所得结果的有效性。模拟均采用预测校正法求解分数阶微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding Mode Control of Fractional-order Hyperchaotic Systems
In this paper, active sliding mode controllers are designed to realize the control and synchronization of fractional-order hyper chaotic systems. Based on stability theorems of fractional calculus, the stability analysis of the proposed method is performed. Finally, three numerical simulations are presented to show the effectiveness of the obtained results. The simulations are all implemented using predictor-corrector method to solve the fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信