盐生植物的栖息地。

A. Kapler
{"title":"盐生植物的栖息地。","authors":"A. Kapler","doi":"10.1079/9781786394330.0019","DOIUrl":null,"url":null,"abstract":"Abstract Salt-tolerant plants occur all over the world in a number of different ecosystems, ranging from pristine alkaline semi-deserts and mangrove forests; through semi-natural meadows and pastures; to man-made habitats such as the environs of graduation towers; over irrigated arable lands with poor drainage in the tropics; and to city lawns in the boreo-temperate zone polluted with NaCl and CaCl2 during deicing. Natural habitats disappear because of urbanization, tourism and agriculture intensification. Since 1980 one-fifth of the Earth's mangrove biome has disappeared as well as more than one-half of alkaline steppes and nearly all Earth's coastal and inland salt meadows, glassworts and other annual communities of muds and sands, Mediterranean and warm Atlantic halophilous scrubs, vegetated sea cliffs and machairs. At the same time halophytes colonize new, man-made habitats, becoming dominant or even the sole species there. Some salt-resistant species, such as Rhizophora mangle in Hawaii and Spartina anglica in the UK, become dangerous invasive species. Mangrove swamps deserve more efficient conservation and restoration efforts since they shelter coasts from erosion, tsunami and storm surge; trap a wide variety of heavy metals; and provide habitats for juvenile fish, oysters and crustaceans. In the temperate and boreal zones the traditional land use of saline meadows and pastures needs to be maintained to preserve the original biodiversity and ecosystem services. Further halophyte domestication will lead to establishment of completely new, artificial agro-ecosystems to yield food, fodder and fuel, as well as fibre and phytoremediation, for rapidly expanding human populations. A range of halophyte crop cultivation systems can help to reduce damage caused by salinization of soils and freshwater, increase food production up to 70% by 2050 and combat coastal erosion in the era of climate change and global pollinator crisis. At the same time we need to eradicate some monospecific thickets built by invasive, alien halophytes to restore primeval, species-rich communities in areas of naturally high salinity.","PeriodicalId":285820,"journal":{"name":"Halophytes and climate change: adaptive mechanisms and potential uses","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Habitats of halophytes.\",\"authors\":\"A. Kapler\",\"doi\":\"10.1079/9781786394330.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Salt-tolerant plants occur all over the world in a number of different ecosystems, ranging from pristine alkaline semi-deserts and mangrove forests; through semi-natural meadows and pastures; to man-made habitats such as the environs of graduation towers; over irrigated arable lands with poor drainage in the tropics; and to city lawns in the boreo-temperate zone polluted with NaCl and CaCl2 during deicing. Natural habitats disappear because of urbanization, tourism and agriculture intensification. Since 1980 one-fifth of the Earth's mangrove biome has disappeared as well as more than one-half of alkaline steppes and nearly all Earth's coastal and inland salt meadows, glassworts and other annual communities of muds and sands, Mediterranean and warm Atlantic halophilous scrubs, vegetated sea cliffs and machairs. At the same time halophytes colonize new, man-made habitats, becoming dominant or even the sole species there. Some salt-resistant species, such as Rhizophora mangle in Hawaii and Spartina anglica in the UK, become dangerous invasive species. Mangrove swamps deserve more efficient conservation and restoration efforts since they shelter coasts from erosion, tsunami and storm surge; trap a wide variety of heavy metals; and provide habitats for juvenile fish, oysters and crustaceans. In the temperate and boreal zones the traditional land use of saline meadows and pastures needs to be maintained to preserve the original biodiversity and ecosystem services. Further halophyte domestication will lead to establishment of completely new, artificial agro-ecosystems to yield food, fodder and fuel, as well as fibre and phytoremediation, for rapidly expanding human populations. A range of halophyte crop cultivation systems can help to reduce damage caused by salinization of soils and freshwater, increase food production up to 70% by 2050 and combat coastal erosion in the era of climate change and global pollinator crisis. At the same time we need to eradicate some monospecific thickets built by invasive, alien halophytes to restore primeval, species-rich communities in areas of naturally high salinity.\",\"PeriodicalId\":285820,\"journal\":{\"name\":\"Halophytes and climate change: adaptive mechanisms and potential uses\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Halophytes and climate change: adaptive mechanisms and potential uses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/9781786394330.0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Halophytes and climate change: adaptive mechanisms and potential uses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781786394330.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

耐盐植物分布在世界各地的许多不同的生态系统中,从原始的碱性半荒漠和红树林;穿过半自然的草地和牧场;到人造栖息地,比如毕业塔的周围;热带地区灌溉过度但排水不良的可耕地;北温带城市草坪在除冰过程中被NaCl和CaCl2污染。由于城市化、旅游业和农业集约化,自然栖息地正在消失。自1980年以来,地球上五分之一的红树林生物群落、一半以上的碱性草原、几乎所有的沿海和内陆盐草甸、玻璃草和其他一年生的泥沙群落、地中海和暖大西洋的嗜盐灌木、有植被的海崖和海刀已经消失。与此同时,盐生植物在新的人造栖息地定居,成为那里的优势物种,甚至是唯一的物种。一些耐盐物种,如夏威夷的Rhizophora mangle和英国的Spartina anglica,成为危险的入侵物种。红树林沼泽保护海岸不受侵蚀、海啸和风暴潮的影响,因此应采取更有效的保护和恢复措施;捕获多种重金属;并为幼鱼、牡蛎和甲壳类动物提供栖息地。在温带和寒带地区,需要维持盐田和牧场的传统土地利用,以保护原有的生物多样性和生态系统服务。盐生植物的进一步驯化将导致建立全新的人工农业生态系统,为迅速扩大的人口生产食物、饲料和燃料,以及纤维和植物修复。一系列盐生植物种植系统可以帮助减少土壤和淡水盐碱化造成的损害,到2050年将粮食产量提高70%,并在气候变化和全球传粉者危机时代应对海岸侵蚀。与此同时,我们需要根除一些由外来入侵盐生植物建立的单一灌丛,以恢复自然高盐度地区原始的、物种丰富的群落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Habitats of halophytes.
Abstract Salt-tolerant plants occur all over the world in a number of different ecosystems, ranging from pristine alkaline semi-deserts and mangrove forests; through semi-natural meadows and pastures; to man-made habitats such as the environs of graduation towers; over irrigated arable lands with poor drainage in the tropics; and to city lawns in the boreo-temperate zone polluted with NaCl and CaCl2 during deicing. Natural habitats disappear because of urbanization, tourism and agriculture intensification. Since 1980 one-fifth of the Earth's mangrove biome has disappeared as well as more than one-half of alkaline steppes and nearly all Earth's coastal and inland salt meadows, glassworts and other annual communities of muds and sands, Mediterranean and warm Atlantic halophilous scrubs, vegetated sea cliffs and machairs. At the same time halophytes colonize new, man-made habitats, becoming dominant or even the sole species there. Some salt-resistant species, such as Rhizophora mangle in Hawaii and Spartina anglica in the UK, become dangerous invasive species. Mangrove swamps deserve more efficient conservation and restoration efforts since they shelter coasts from erosion, tsunami and storm surge; trap a wide variety of heavy metals; and provide habitats for juvenile fish, oysters and crustaceans. In the temperate and boreal zones the traditional land use of saline meadows and pastures needs to be maintained to preserve the original biodiversity and ecosystem services. Further halophyte domestication will lead to establishment of completely new, artificial agro-ecosystems to yield food, fodder and fuel, as well as fibre and phytoremediation, for rapidly expanding human populations. A range of halophyte crop cultivation systems can help to reduce damage caused by salinization of soils and freshwater, increase food production up to 70% by 2050 and combat coastal erosion in the era of climate change and global pollinator crisis. At the same time we need to eradicate some monospecific thickets built by invasive, alien halophytes to restore primeval, species-rich communities in areas of naturally high salinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信