我们能通过静息状态脑电图预测谁对神经反馈反应更强吗?

Günet Eroğlu, B. Ekici, F. Arman, Mert Gürkan, M. Çetin, Selim Balcisoy
{"title":"我们能通过静息状态脑电图预测谁对神经反馈反应更强吗?","authors":"Günet Eroğlu, B. Ekici, F. Arman, Mert Gürkan, M. Çetin, Selim Balcisoy","doi":"10.1109/TIPTEKNO.2018.8596857","DOIUrl":null,"url":null,"abstract":"AutoTrainBrain is a neurofeedback and multi sensory learning-based mobile phone software application, designed at Sabanci University with the aim of improving the cognitive functions of dyslexic children. We investigated whether we can predict who will respond more to neurofeedback applied by AutoTrainBrain by analyzing the resting state EEG brain data. Based on our analysis of the EEG data collected, we observed that the power amplitudes across resting states in the theta band over the left Dorsolateral Prefrontal Cortex (DLPFC) (electrode: FC5) predicts who will respond more to neurofeedback with AutoTrainBrain (Pearson correlation coeff: 0.78, P<0.001). When we reduce the high theta brain waves with neurofeedback in this area, we hypothesize that better cortical regulation and inhibition are developed in the brain, therefore the response to neurofeedback increases.","PeriodicalId":127364,"journal":{"name":"2018 Medical Technologies National Congress (TIPTEKNO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Can we predict who will respond more to neurofeedback with resting state EEG?\",\"authors\":\"Günet Eroğlu, B. Ekici, F. Arman, Mert Gürkan, M. Çetin, Selim Balcisoy\",\"doi\":\"10.1109/TIPTEKNO.2018.8596857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AutoTrainBrain is a neurofeedback and multi sensory learning-based mobile phone software application, designed at Sabanci University with the aim of improving the cognitive functions of dyslexic children. We investigated whether we can predict who will respond more to neurofeedback applied by AutoTrainBrain by analyzing the resting state EEG brain data. Based on our analysis of the EEG data collected, we observed that the power amplitudes across resting states in the theta band over the left Dorsolateral Prefrontal Cortex (DLPFC) (electrode: FC5) predicts who will respond more to neurofeedback with AutoTrainBrain (Pearson correlation coeff: 0.78, P<0.001). When we reduce the high theta brain waves with neurofeedback in this area, we hypothesize that better cortical regulation and inhibition are developed in the brain, therefore the response to neurofeedback increases.\",\"PeriodicalId\":127364,\"journal\":{\"name\":\"2018 Medical Technologies National Congress (TIPTEKNO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Medical Technologies National Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO.2018.8596857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2018.8596857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

AutoTrainBrain是一款基于神经反馈和多感官学习的手机软件应用程序,由萨班奇大学设计,旨在改善阅读障碍儿童的认知功能。通过分析静息状态脑电图数据,我们研究了是否可以预测谁对AutoTrainBrain应用的神经反馈反应更强。通过对收集到的脑电图数据的分析,我们观察到左背外侧前额叶皮层(DLPFC)(电极:FC5)的θ波段静息状态下的功率幅值可以预测谁对AutoTrainBrain的神经反馈反应更强(Pearson相关系数:0.78,P<0.001)。当我们用神经反馈减少这个区域的高θ脑波时,我们假设大脑皮层有更好的调节和抑制,因此对神经反馈的反应增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can we predict who will respond more to neurofeedback with resting state EEG?
AutoTrainBrain is a neurofeedback and multi sensory learning-based mobile phone software application, designed at Sabanci University with the aim of improving the cognitive functions of dyslexic children. We investigated whether we can predict who will respond more to neurofeedback applied by AutoTrainBrain by analyzing the resting state EEG brain data. Based on our analysis of the EEG data collected, we observed that the power amplitudes across resting states in the theta band over the left Dorsolateral Prefrontal Cortex (DLPFC) (electrode: FC5) predicts who will respond more to neurofeedback with AutoTrainBrain (Pearson correlation coeff: 0.78, P<0.001). When we reduce the high theta brain waves with neurofeedback in this area, we hypothesize that better cortical regulation and inhibition are developed in the brain, therefore the response to neurofeedback increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信