FreGraPaD:用于语义数据流的频繁RDF图模式检测

Fethi Belghaouti, A. Bouzeghoub, Zakia Kazi-Aoul, Raja Chiky
{"title":"FreGraPaD:用于语义数据流的频繁RDF图模式检测","authors":"Fethi Belghaouti, A. Bouzeghoub, Zakia Kazi-Aoul, Raja Chiky","doi":"10.1109/RCIS.2016.7549333","DOIUrl":null,"url":null,"abstract":"Nowadays, high volumes of data are generated and published at a very high velocity by real-time systems, such as social networks, e-commerce, weather stations and sensors, producing heterogeneous data streams. To take advantage of linked data and offer interoperable solutions, semantic Web technologies have been used. To analyze these huge volumes of data, different stream mining algorithms exist such as compression or load-shedding. Nevertheless, most of them need many passes through the data and often store part of it on disk. If we want to apply efficient compression on semantic data streams, we need to first detect frequent graph patterns in RDF streams. In this article, we present FreGraPaD, an algorithm that detects those patterns in a single pass, using exclusively internal memory and following a data structure oriented approach. Experimental results clearly confirm the good accuracy of FreGraPaD in detecting frequent graph patterns from semantic data streams.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"FreGraPaD: Frequent RDF graph patterns detection for semantic data streams\",\"authors\":\"Fethi Belghaouti, A. Bouzeghoub, Zakia Kazi-Aoul, Raja Chiky\",\"doi\":\"10.1109/RCIS.2016.7549333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, high volumes of data are generated and published at a very high velocity by real-time systems, such as social networks, e-commerce, weather stations and sensors, producing heterogeneous data streams. To take advantage of linked data and offer interoperable solutions, semantic Web technologies have been used. To analyze these huge volumes of data, different stream mining algorithms exist such as compression or load-shedding. Nevertheless, most of them need many passes through the data and often store part of it on disk. If we want to apply efficient compression on semantic data streams, we need to first detect frequent graph patterns in RDF streams. In this article, we present FreGraPaD, an algorithm that detects those patterns in a single pass, using exclusively internal memory and following a data structure oriented approach. Experimental results clearly confirm the good accuracy of FreGraPaD in detecting frequent graph patterns from semantic data streams.\",\"PeriodicalId\":344289,\"journal\":{\"name\":\"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2016.7549333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

如今,社交网络、电子商务、气象站和传感器等实时系统以非常高的速度生成和发布大量数据,从而产生异构数据流。为了利用链接数据并提供可互操作的解决方案,已经使用了语义Web技术。为了分析这些巨大的数据量,存在不同的流挖掘算法,例如压缩或负载减少。尽管如此,它们中的大多数都需要多次遍历数据,并且通常将部分数据存储在磁盘上。如果我们想在语义数据流上应用有效的压缩,我们需要首先检测RDF流中的频繁图形模式。在本文中,我们介绍了FreGraPaD,这是一种只使用内部内存并遵循面向数据结构的方法,一次检测这些模式的算法。实验结果清楚地证实了FreGraPaD在从语义数据流中检测频繁图形模式方面具有良好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FreGraPaD: Frequent RDF graph patterns detection for semantic data streams
Nowadays, high volumes of data are generated and published at a very high velocity by real-time systems, such as social networks, e-commerce, weather stations and sensors, producing heterogeneous data streams. To take advantage of linked data and offer interoperable solutions, semantic Web technologies have been used. To analyze these huge volumes of data, different stream mining algorithms exist such as compression or load-shedding. Nevertheless, most of them need many passes through the data and often store part of it on disk. If we want to apply efficient compression on semantic data streams, we need to first detect frequent graph patterns in RDF streams. In this article, we present FreGraPaD, an algorithm that detects those patterns in a single pass, using exclusively internal memory and following a data structure oriented approach. Experimental results clearly confirm the good accuracy of FreGraPaD in detecting frequent graph patterns from semantic data streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信