递归神经网络优化投寄抵押品

P. Henry-Labordère
{"title":"递归神经网络优化投寄抵押品","authors":"P. Henry-Labordère","doi":"10.2139/ssrn.3140327","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of optimal posting of collateral in two assets. The associated stochastic control problem is then solved by parameterizing the optimal control with a (recurrent) neural network. Then, the training of the neural network is achieved with a back-propagation algorithm, possibly complemented with a particle swarm optimization (or simulated annealing). Our algorithm is then illustrated with numerical examples.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Posting of Collateral with Recurrent Neural Networks\",\"authors\":\"P. Henry-Labordère\",\"doi\":\"10.2139/ssrn.3140327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of optimal posting of collateral in two assets. The associated stochastic control problem is then solved by parameterizing the optimal control with a (recurrent) neural network. Then, the training of the neural network is achieved with a back-propagation algorithm, possibly complemented with a particle swarm optimization (or simulated annealing). Our algorithm is then illustrated with numerical examples.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3140327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3140327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两种资产的最优质押问题。然后通过(循环)神经网络参数化最优控制来解决相关的随机控制问题。然后,通过反向传播算法实现神经网络的训练,可能辅以粒子群优化(或模拟退火)。然后用数值算例说明了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Posting of Collateral with Recurrent Neural Networks
In this paper, we consider the problem of optimal posting of collateral in two assets. The associated stochastic control problem is then solved by parameterizing the optimal control with a (recurrent) neural network. Then, the training of the neural network is achieved with a back-propagation algorithm, possibly complemented with a particle swarm optimization (or simulated annealing). Our algorithm is then illustrated with numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信