基于模型的下一代网络RL准入控制算法

S. Mignanti, A. Giorgio, V. Suraci
{"title":"基于模型的下一代网络RL准入控制算法","authors":"S. Mignanti, A. Giorgio, V. Suraci","doi":"10.1109/ICN.2009.39","DOIUrl":null,"url":null,"abstract":"In this paper we study the call admission control problem to optimize the network operators revenue guaranteeing quality of service to the end users. We consider a network scenario where each class of service is characterized by a different constant bit rate and an associated revenue. We formulate the problem as a Semi-Markov Decision Process,and we use a model based Reinforcement Learning approach.Other traditional algorithms require an explicit knowledge of the state transition models while our solution learn it on-line.We will show how our policy provides better solution than a classic greedy algorithm.","PeriodicalId":299215,"journal":{"name":"2009 Eighth International Conference on Networks","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Model Based RL Admission Control Algorithm for Next Generation Networks\",\"authors\":\"S. Mignanti, A. Giorgio, V. Suraci\",\"doi\":\"10.1109/ICN.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the call admission control problem to optimize the network operators revenue guaranteeing quality of service to the end users. We consider a network scenario where each class of service is characterized by a different constant bit rate and an associated revenue. We formulate the problem as a Semi-Markov Decision Process,and we use a model based Reinforcement Learning approach.Other traditional algorithms require an explicit knowledge of the state transition models while our solution learn it on-line.We will show how our policy provides better solution than a classic greedy algorithm.\",\"PeriodicalId\":299215,\"journal\":{\"name\":\"2009 Eighth International Conference on Networks\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Eighth International Conference on Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICN.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Eighth International Conference on Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICN.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

为了优化网络运营商的收益,保证对终端用户的服务质量,本文研究了呼叫接纳控制问题。我们考虑一个网络场景,其中每一类服务都具有不同的恒定比特率和相关收入。我们将问题表述为半马尔可夫决策过程,并使用基于模型的强化学习方法。其他传统算法需要明确的状态转移模型知识,而我们的解决方案在线学习。我们将展示我们的策略如何提供比经典贪婪算法更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Based RL Admission Control Algorithm for Next Generation Networks
In this paper we study the call admission control problem to optimize the network operators revenue guaranteeing quality of service to the end users. We consider a network scenario where each class of service is characterized by a different constant bit rate and an associated revenue. We formulate the problem as a Semi-Markov Decision Process,and we use a model based Reinforcement Learning approach.Other traditional algorithms require an explicit knowledge of the state transition models while our solution learn it on-line.We will show how our policy provides better solution than a classic greedy algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信