挖掘变更历史以快速识别bug位置:Eclipse项目的一个案例研究

C. Tantithamthavorn, Rattamont Teekavanich, Akinori Ihara, Ken-ichi Matsumoto
{"title":"挖掘变更历史以快速识别bug位置:Eclipse项目的一个案例研究","authors":"C. Tantithamthavorn, Rattamont Teekavanich, Akinori Ihara, Ken-ichi Matsumoto","doi":"10.1109/ISSREW.2013.6688888","DOIUrl":null,"url":null,"abstract":"In this study, we proposed an approach to mine a change history to improve the bug localization performance. The key idea is that a recently fixed file may be fixed in the near future. We used a combination of textual feature and mining the change history to recommend source code files that are likely to be fixed for a given bug report. First, we adopted the Vector Space Model (VSM) to find relevant source code files that are textually similar to the bug report. Second, we analyzed the change history to identify previously fixed files. We then estimated the fault proneness of these files. Finally, we combined the two scores, from textual similarity and fault proneness, for every source code file. We then recommend developers examine source code files with higher scores. We evaluated our approach based on 1,212 bug reports from the Eclipse Platform and Eclipse JDT. The experimental results show that our proposed approach can improve the bug localization performance and effectively identify buggy files.","PeriodicalId":332420,"journal":{"name":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Mining A change history to quickly identify bug locations : A case study of the Eclipse project\",\"authors\":\"C. Tantithamthavorn, Rattamont Teekavanich, Akinori Ihara, Ken-ichi Matsumoto\",\"doi\":\"10.1109/ISSREW.2013.6688888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we proposed an approach to mine a change history to improve the bug localization performance. The key idea is that a recently fixed file may be fixed in the near future. We used a combination of textual feature and mining the change history to recommend source code files that are likely to be fixed for a given bug report. First, we adopted the Vector Space Model (VSM) to find relevant source code files that are textually similar to the bug report. Second, we analyzed the change history to identify previously fixed files. We then estimated the fault proneness of these files. Finally, we combined the two scores, from textual similarity and fault proneness, for every source code file. We then recommend developers examine source code files with higher scores. We evaluated our approach based on 1,212 bug reports from the Eclipse Platform and Eclipse JDT. The experimental results show that our proposed approach can improve the bug localization performance and effectively identify buggy files.\",\"PeriodicalId\":332420,\"journal\":{\"name\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2013.6688888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2013.6688888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本研究中,我们提出了一种挖掘变更历史的方法来提高bug定位性能。关键思想是最近修复的文件可能在不久的将来被修复。我们结合使用文本特性和挖掘变更历史来推荐可能针对给定错误报告进行修复的源代码文件。首先,我们采用向量空间模型(VSM)找到与bug报告文本相似的相关源代码文件。其次,我们分析了变更历史以确定以前修复的文件。然后我们估计了这些文件的错误倾向。最后,我们将每个源代码文件的文本相似度和错误倾向这两个分数结合起来。然后,我们建议开发人员以较高的分数检查源代码文件。我们根据来自Eclipse平台和Eclipse JDT的1212个bug报告评估了我们的方法。实验结果表明,该方法可以提高bug定位性能,有效地识别出bug文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining A change history to quickly identify bug locations : A case study of the Eclipse project
In this study, we proposed an approach to mine a change history to improve the bug localization performance. The key idea is that a recently fixed file may be fixed in the near future. We used a combination of textual feature and mining the change history to recommend source code files that are likely to be fixed for a given bug report. First, we adopted the Vector Space Model (VSM) to find relevant source code files that are textually similar to the bug report. Second, we analyzed the change history to identify previously fixed files. We then estimated the fault proneness of these files. Finally, we combined the two scores, from textual similarity and fault proneness, for every source code file. We then recommend developers examine source code files with higher scores. We evaluated our approach based on 1,212 bug reports from the Eclipse Platform and Eclipse JDT. The experimental results show that our proposed approach can improve the bug localization performance and effectively identify buggy files.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信