部分分类:优柔寡断的好处

Y. Baram
{"title":"部分分类:优柔寡断的好处","authors":"Y. Baram","doi":"10.1109/KES.1998.725855","DOIUrl":null,"url":null,"abstract":"Classification methods may be improved in the sense of a meaningful, economically motivated benefit function, by allowing for indecision in a certain domains near the separation surfaces between the classes. Such a \"partial\" classifier, based on the intersection surface between parameterized probability density functions, is proposed. It is found to be beneficial with respect to \"full\" classification, assigning each new object to a class, in the prediction of stock behaviour.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial classification: the benefit of indecision\",\"authors\":\"Y. Baram\",\"doi\":\"10.1109/KES.1998.725855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification methods may be improved in the sense of a meaningful, economically motivated benefit function, by allowing for indecision in a certain domains near the separation surfaces between the classes. Such a \\\"partial\\\" classifier, based on the intersection surface between parameterized probability density functions, is proposed. It is found to be beneficial with respect to \\\"full\\\" classification, assigning each new object to a class, in the prediction of stock behaviour.\",\"PeriodicalId\":394492,\"journal\":{\"name\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1998.725855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过允许在类之间的分离面附近的某些领域中存在优柔寡断,分类方法可以在有意义的、经济上有动机的利益函数的意义上得到改进。提出了一种基于参数化概率密度函数相交面的“部分”分类器。人们发现,在预测股票行为时,它有利于“完全”分类,将每个新对象分配到一个类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial classification: the benefit of indecision
Classification methods may be improved in the sense of a meaningful, economically motivated benefit function, by allowing for indecision in a certain domains near the separation surfaces between the classes. Such a "partial" classifier, based on the intersection surface between parameterized probability density functions, is proposed. It is found to be beneficial with respect to "full" classification, assigning each new object to a class, in the prediction of stock behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信