M. Despeisse, D. Moraes, G. Anelli, P. Jarron, J. Kapłon, R. Rusack, S. Saramad, N. Wyrsch
{"title":"基于ASIC技术的氢化非晶硅薄膜传感器","authors":"M. Despeisse, D. Moraes, G. Anelli, P. Jarron, J. Kapłon, R. Rusack, S. Saramad, N. Wyrsch","doi":"10.1109/NSSMIC.2005.1596579","DOIUrl":null,"url":null,"abstract":"The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting \"thin-film on ASIC\" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre-amplifiers. The measurement set-up also permits to study the depletion of the sensor and results are presented. Finally, direct detection of 5.9 keV X-rays with TFA detectors based on an ASIC integrating low noise pre-amplifiers (27 e/sup -/ r.m.s.) are shown.","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hydrogenated amorphous silicon sensors based on thin film on ASIC technology\",\"authors\":\"M. Despeisse, D. Moraes, G. Anelli, P. Jarron, J. Kapłon, R. Rusack, S. Saramad, N. Wyrsch\",\"doi\":\"10.1109/NSSMIC.2005.1596579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting \\\"thin-film on ASIC\\\" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre-amplifiers. The measurement set-up also permits to study the depletion of the sensor and results are presented. Finally, direct detection of 5.9 keV X-rays with TFA detectors based on an ASIC integrating low noise pre-amplifiers (27 e/sup -/ r.m.s.) are shown.\",\"PeriodicalId\":105619,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2005.1596579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogenated amorphous silicon sensors based on thin film on ASIC technology
The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre-amplifiers. The measurement set-up also permits to study the depletion of the sensor and results are presented. Finally, direct detection of 5.9 keV X-rays with TFA detectors based on an ASIC integrating low noise pre-amplifiers (27 e/sup -/ r.m.s.) are shown.