基于MRFO-AEO的电池寿命预测参数识别

Junjie Lan, Jinlin Wei, Ting Luo, Dabin Huang, Hao Zhang, Bo Yang
{"title":"基于MRFO-AEO的电池寿命预测参数识别","authors":"Junjie Lan, Jinlin Wei, Ting Luo, Dabin Huang, Hao Zhang, Bo Yang","doi":"10.1109/AEEES54426.2022.9759404","DOIUrl":null,"url":null,"abstract":"In this paper, a novel hybrid algorithm based on manta ray foraging optimization (MRFO) and artificial ecosystem-based optimization (AEO), called MRFO-AEO, is proposed to identify the battery parameters based on a third-order Thevenin equivalent circuit model. To improve the accuracy and stability of the battery parameter identification, MRFO-AEO discards the random search operation in the MRFO cyclone foraging operator and dynamically coordinates the AEO decomposition operator and the improved MRFO tumble foraging operator with the iterative process to reasonably balance the local exploration and global search. And the validity of the battery model and the feasibility of the algorithm are verified under the experimental data of battery discharge at the Kunbei converter station in Yunnan, China.","PeriodicalId":252797,"journal":{"name":"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRFO-AEO Based Batteries Parameter Identification for Life Prediction\",\"authors\":\"Junjie Lan, Jinlin Wei, Ting Luo, Dabin Huang, Hao Zhang, Bo Yang\",\"doi\":\"10.1109/AEEES54426.2022.9759404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel hybrid algorithm based on manta ray foraging optimization (MRFO) and artificial ecosystem-based optimization (AEO), called MRFO-AEO, is proposed to identify the battery parameters based on a third-order Thevenin equivalent circuit model. To improve the accuracy and stability of the battery parameter identification, MRFO-AEO discards the random search operation in the MRFO cyclone foraging operator and dynamically coordinates the AEO decomposition operator and the improved MRFO tumble foraging operator with the iterative process to reasonably balance the local exploration and global search. And the validity of the battery model and the feasibility of the algorithm are verified under the experimental data of battery discharge at the Kunbei converter station in Yunnan, China.\",\"PeriodicalId\":252797,\"journal\":{\"name\":\"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEEES54426.2022.9759404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEEES54426.2022.9759404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于三阶Thevenin等效电路模型的基于蝠鲼觅食优化(MRFO)和人工生态系统优化(AEO)的新型混合算法,称为MRFO-AEO。为了提高电池参数识别的准确性和稳定性,MRFO-AEO抛弃了MRFO旋风觅食算子中的随机搜索操作,在迭代过程中动态协调了AEO分解算子和改进的MRFO滚翻觅食算子,合理平衡了局部探索和全局搜索。在云南昆北换流站的电池放电实验数据下,验证了模型的有效性和算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRFO-AEO Based Batteries Parameter Identification for Life Prediction
In this paper, a novel hybrid algorithm based on manta ray foraging optimization (MRFO) and artificial ecosystem-based optimization (AEO), called MRFO-AEO, is proposed to identify the battery parameters based on a third-order Thevenin equivalent circuit model. To improve the accuracy and stability of the battery parameter identification, MRFO-AEO discards the random search operation in the MRFO cyclone foraging operator and dynamically coordinates the AEO decomposition operator and the improved MRFO tumble foraging operator with the iterative process to reasonably balance the local exploration and global search. And the validity of the battery model and the feasibility of the algorithm are verified under the experimental data of battery discharge at the Kunbei converter station in Yunnan, China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信