基于信息熵的SAR图像多任务稀疏表示目标识别

Jiejun Yin, Gong Zhang, Su Liu, Xiuxia Ji
{"title":"基于信息熵的SAR图像多任务稀疏表示目标识别","authors":"Jiejun Yin, Gong Zhang, Su Liu, Xiuxia Ji","doi":"10.1109/RADAR.2016.8059514","DOIUrl":null,"url":null,"abstract":"Weak relatedness among tasks leads to failure of regularized multi-task sparse representation (RMTSR) model to handle target recognition in synthetic aperture radar (SAR) imagery. Therefore, it is vital to measure task relationship not only in order to obtain desired model but shrink the size of dictionary and the training time. In this paper, sparse representation under each feature modality is considered as a single task in RMTSR. A nonlinear sparsity correlation index (NSCI) is presented. Furthermore, nonlinear correlation information entropy (NCIE) deduced from NSCI is utilized to quantify the relatedness among tasks from view of information theory. Experiments conducted on MSTAR demonstrate the outperformance and effectiveness of RMTSR even in the case of limited training resource. Moreover, NCIE is efficient to measure the generalization of model and select appropriate feature set to reduce complexity.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target recognition with information entropy based multi-task sparse representation in SAR imagery\",\"authors\":\"Jiejun Yin, Gong Zhang, Su Liu, Xiuxia Ji\",\"doi\":\"10.1109/RADAR.2016.8059514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weak relatedness among tasks leads to failure of regularized multi-task sparse representation (RMTSR) model to handle target recognition in synthetic aperture radar (SAR) imagery. Therefore, it is vital to measure task relationship not only in order to obtain desired model but shrink the size of dictionary and the training time. In this paper, sparse representation under each feature modality is considered as a single task in RMTSR. A nonlinear sparsity correlation index (NSCI) is presented. Furthermore, nonlinear correlation information entropy (NCIE) deduced from NSCI is utilized to quantify the relatedness among tasks from view of information theory. Experiments conducted on MSTAR demonstrate the outperformance and effectiveness of RMTSR even in the case of limited training resource. Moreover, NCIE is efficient to measure the generalization of model and select appropriate feature set to reduce complexity.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任务间的弱相关性导致正则化多任务稀疏表示(RMTSR)模型无法处理合成孔径雷达(SAR)图像中的目标识别问题。因此,对任务关系进行度量不仅可以获得理想的模型,而且可以减少字典的大小和训练时间。本文将每个特征模态下的稀疏表示视为RMTSR中的单个任务。提出了一种非线性稀疏相关指数(NSCI)。此外,从信息论的角度,利用NSCI推导出的非线性相关信息熵(NCIE)来量化任务之间的相关性。在MSTAR上进行的实验表明,即使在训练资源有限的情况下,RMTSR也具有优异的性能和有效性。此外,NCIE可以有效地衡量模型的泛化程度,并选择合适的特征集来降低复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target recognition with information entropy based multi-task sparse representation in SAR imagery
Weak relatedness among tasks leads to failure of regularized multi-task sparse representation (RMTSR) model to handle target recognition in synthetic aperture radar (SAR) imagery. Therefore, it is vital to measure task relationship not only in order to obtain desired model but shrink the size of dictionary and the training time. In this paper, sparse representation under each feature modality is considered as a single task in RMTSR. A nonlinear sparsity correlation index (NSCI) is presented. Furthermore, nonlinear correlation information entropy (NCIE) deduced from NSCI is utilized to quantify the relatedness among tasks from view of information theory. Experiments conducted on MSTAR demonstrate the outperformance and effectiveness of RMTSR even in the case of limited training resource. Moreover, NCIE is efficient to measure the generalization of model and select appropriate feature set to reduce complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信