基于层次深度强化学习的机器人避障运动规划

Guoquan Zhao, Fen Ying, Zuowei Pang, Huashan Liu
{"title":"基于层次深度强化学习的机器人避障运动规划","authors":"Guoquan Zhao, Fen Ying, Zuowei Pang, Huashan Liu","doi":"10.1145/3598151.3598170","DOIUrl":null,"url":null,"abstract":"When the task environment becomes complex, deep reinforcement learning (DRL) is easy to encounter the problems of gradient disappearance or explosion. To solve this problem, this paper proposes a hierarchical DRL framework consisting of task and action layers. The task layer learns interpretable representations of tasks and decision processes, and drives the action layer. The action layer learns to collaboratively accomplish complex tasks in different roles. The DRL algorithm based on this framework is tested on a redundant degree of freedom robot in obstacle avoidance motion planning tasks, and comparative experimental results prove the effectiveness and feasibility of the proposed method.","PeriodicalId":398644,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic motion planning with obstacle avoidance based on hierarchical deep reinforcement learning\",\"authors\":\"Guoquan Zhao, Fen Ying, Zuowei Pang, Huashan Liu\",\"doi\":\"10.1145/3598151.3598170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the task environment becomes complex, deep reinforcement learning (DRL) is easy to encounter the problems of gradient disappearance or explosion. To solve this problem, this paper proposes a hierarchical DRL framework consisting of task and action layers. The task layer learns interpretable representations of tasks and decision processes, and drives the action layer. The action layer learns to collaboratively accomplish complex tasks in different roles. The DRL algorithm based on this framework is tested on a redundant degree of freedom robot in obstacle avoidance motion planning tasks, and comparative experimental results prove the effectiveness and feasibility of the proposed method.\",\"PeriodicalId\":398644,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3598151.3598170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3598151.3598170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当任务环境变得复杂时,深度强化学习(deep reinforcement learning, DRL)容易遇到梯度消失或爆炸的问题。为了解决这一问题,本文提出了一种由任务层和动作层组成的分层DRL框架。任务层学习任务和决策过程的可解释表示,并驱动操作层。动作层学习以不同的角色协作完成复杂的任务。基于该框架的DRL算法在一个冗余自由度机器人避障运动规划任务上进行了测试,对比实验结果证明了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic motion planning with obstacle avoidance based on hierarchical deep reinforcement learning
When the task environment becomes complex, deep reinforcement learning (DRL) is easy to encounter the problems of gradient disappearance or explosion. To solve this problem, this paper proposes a hierarchical DRL framework consisting of task and action layers. The task layer learns interpretable representations of tasks and decision processes, and drives the action layer. The action layer learns to collaboratively accomplish complex tasks in different roles. The DRL algorithm based on this framework is tested on a redundant degree of freedom robot in obstacle avoidance motion planning tasks, and comparative experimental results prove the effectiveness and feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信