原始性和同一性通过中国余数测试

Manindra Agrawal, Somenath Biswas
{"title":"原始性和同一性通过中国余数测试","authors":"Manindra Agrawal, Somenath Biswas","doi":"10.1109/SFFCS.1999.814592","DOIUrl":null,"url":null,"abstract":"Gives a simple and new primality testing algorithm by reducing primality testing for a number n to testing if a specific univariate identity over Z/sub n/ holds. We also give new randomized algorithms for testing if a multivariate polynomial, over a finite field or over rationals, is identically zero. The first of these algorithms also works over Z/sub n/ for any n. The running time of the algorithms is polynomial in the size of the arithmetic circuit representing the input polynomial and the error parameter. These algorithms use fewer random bits and work for a larger class of polynomials than all the previously known methods, e.g. the Schwartz-Zippel test (J.T. Schwartz, 1980; R.E. Zippel, 1979), the Chen-Kao (1997) test and the Lewin-Vadhan (1998) test. Our algorithms first transform the input polynomial to a univariate polynomial and then use Chinese remaindering over univariate polynomials to effectively test if it is zero.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Primality and identity testing via Chinese remaindering\",\"authors\":\"Manindra Agrawal, Somenath Biswas\",\"doi\":\"10.1109/SFFCS.1999.814592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gives a simple and new primality testing algorithm by reducing primality testing for a number n to testing if a specific univariate identity over Z/sub n/ holds. We also give new randomized algorithms for testing if a multivariate polynomial, over a finite field or over rationals, is identically zero. The first of these algorithms also works over Z/sub n/ for any n. The running time of the algorithms is polynomial in the size of the arithmetic circuit representing the input polynomial and the error parameter. These algorithms use fewer random bits and work for a larger class of polynomials than all the previously known methods, e.g. the Schwartz-Zippel test (J.T. Schwartz, 1980; R.E. Zippel, 1979), the Chen-Kao (1997) test and the Lewin-Vadhan (1998) test. Our algorithms first transform the input polynomial to a univariate polynomial and then use Chinese remaindering over univariate polynomials to effectively test if it is zero.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

将数n的素数检验简化为Z/下标n/上某单变量恒等式是否成立,给出了一种简单的素数检验算法。我们也给出了新的随机算法来检验一个多元多项式在有限域上或在有理数上是否同零。第一种算法也适用于任意n的Z/sub n/。算法的运行时间是表示输入多项式和误差参数的算术电路大小的多项式。这些算法使用更少的随机比特,并且比以前所有已知的方法都适用于更大的多项式类,例如Schwartz- zippel检验(J.T. Schwartz, 1980;R.E. Zippel, 1979), Chen-Kao(1997)测试和Lewin-Vadhan(1998)测试。我们的算法首先将输入多项式转换为单变量多项式,然后使用单变量多项式的中文剩余来有效地测试它是否为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primality and identity testing via Chinese remaindering
Gives a simple and new primality testing algorithm by reducing primality testing for a number n to testing if a specific univariate identity over Z/sub n/ holds. We also give new randomized algorithms for testing if a multivariate polynomial, over a finite field or over rationals, is identically zero. The first of these algorithms also works over Z/sub n/ for any n. The running time of the algorithms is polynomial in the size of the arithmetic circuit representing the input polynomial and the error parameter. These algorithms use fewer random bits and work for a larger class of polynomials than all the previously known methods, e.g. the Schwartz-Zippel test (J.T. Schwartz, 1980; R.E. Zippel, 1979), the Chen-Kao (1997) test and the Lewin-Vadhan (1998) test. Our algorithms first transform the input polynomial to a univariate polynomial and then use Chinese remaindering over univariate polynomials to effectively test if it is zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信