基于传感器网络的随机信号源定位研究

Ashok Sundaresan, P. Varshney, N. Rao
{"title":"基于传感器网络的随机信号源定位研究","authors":"Ashok Sundaresan, P. Varshney, N. Rao","doi":"10.1109/CISS.2009.5054722","DOIUrl":null,"url":null,"abstract":"The problem of source localization using a network of sensors is considered. A maximum likelihood estimation (MLE) based approach is adopted. The measurements received at the sensors due to the random phenomenon are spatially correlated and are characterized by a multivariate distribution. Using the theory of copulas, the joint parametric density of sensor observations is obtained assuming only the knowledge of their marginal densities. An example showing the efficiency of the proposed approach is presented.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On localizing the source of random signals using sensor networks\",\"authors\":\"Ashok Sundaresan, P. Varshney, N. Rao\",\"doi\":\"10.1109/CISS.2009.5054722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of source localization using a network of sensors is considered. A maximum likelihood estimation (MLE) based approach is adopted. The measurements received at the sensors due to the random phenomenon are spatially correlated and are characterized by a multivariate distribution. Using the theory of copulas, the joint parametric density of sensor observations is obtained assuming only the knowledge of their marginal densities. An example showing the efficiency of the proposed approach is presented.\",\"PeriodicalId\":433796,\"journal\":{\"name\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2009.5054722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了利用传感器网络进行源定位的问题。采用了基于极大似然估计(MLE)的方法。由于随机现象,传感器接收到的测量值是空间相关的,并具有多元分布的特征。利用copula理论,在只知道传感器观测值的边缘密度的前提下,得到传感器观测值的联合参数密度。最后给出了一个算例,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On localizing the source of random signals using sensor networks
The problem of source localization using a network of sensors is considered. A maximum likelihood estimation (MLE) based approach is adopted. The measurements received at the sensors due to the random phenomenon are spatially correlated and are characterized by a multivariate distribution. Using the theory of copulas, the joint parametric density of sensor observations is obtained assuming only the knowledge of their marginal densities. An example showing the efficiency of the proposed approach is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信