基于图像处理技术的彩色眼底图像渗出物检测系统

P. Ravivarma, B. Ramasubramanian, G. Arunmani, B. Babumohan
{"title":"基于图像处理技术的彩色眼底图像渗出物检测系统","authors":"P. Ravivarma, B. Ramasubramanian, G. Arunmani, B. Babumohan","doi":"10.1109/ICACCCT.2014.7019366","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy is the major cause of blindness in many diabetic patients. Automatic detection of exudates in retinal images can assist in early screening of Diabetic Retinopathy. Several techniques can achieve good performance on a good quality retinal images. But when the image is of low quality, we need a new method. In this paper, we presented a novel method for the detection of exudates in low quality retinal images. The colour retinal images are pre-processed by a hyperbolic median filter and then segmented using fuzzy c-means clustering algorithm. After segmenting the images, a set of features based on colour, size and texture are extracted. Then these features are optimized using Particle Swarm Optimization (PSO) technique. Finally the features are classified using a recursive Support Vector Machine (SVM) Classifier. The proposed method achieves an accuracy of 98% and predictivity of 98.5% for the identification of exudates.","PeriodicalId":239918,"journal":{"name":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","volume":"22 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An efficient system for the detection of exudates in colour fundus images using image processing technique\",\"authors\":\"P. Ravivarma, B. Ramasubramanian, G. Arunmani, B. Babumohan\",\"doi\":\"10.1109/ICACCCT.2014.7019366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Retinopathy is the major cause of blindness in many diabetic patients. Automatic detection of exudates in retinal images can assist in early screening of Diabetic Retinopathy. Several techniques can achieve good performance on a good quality retinal images. But when the image is of low quality, we need a new method. In this paper, we presented a novel method for the detection of exudates in low quality retinal images. The colour retinal images are pre-processed by a hyperbolic median filter and then segmented using fuzzy c-means clustering algorithm. After segmenting the images, a set of features based on colour, size and texture are extracted. Then these features are optimized using Particle Swarm Optimization (PSO) technique. Finally the features are classified using a recursive Support Vector Machine (SVM) Classifier. The proposed method achieves an accuracy of 98% and predictivity of 98.5% for the identification of exudates.\",\"PeriodicalId\":239918,\"journal\":{\"name\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"volume\":\"22 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCCT.2014.7019366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCCT.2014.7019366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

糖尿病视网膜病变是许多糖尿病患者失明的主要原因。视网膜图像中渗出物的自动检测有助于糖尿病视网膜病变的早期筛查。有几种技术可以在高质量的视网膜图像上获得良好的性能。但是当图像质量较差时,我们需要一种新的方法。本文提出了一种检测低质量视网膜图像中渗出物的新方法。采用双曲中值滤波对彩色视网膜图像进行预处理,然后采用模糊c均值聚类算法对彩色视网膜图像进行分割。对图像进行分割后,提取一组基于颜色、大小和纹理的特征。然后利用粒子群算法(PSO)对这些特征进行优化。最后使用递归支持向量机(SVM)分类器对特征进行分类。该方法对渗出物的识别准确率为98%,预测率为98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient system for the detection of exudates in colour fundus images using image processing technique
Diabetic Retinopathy is the major cause of blindness in many diabetic patients. Automatic detection of exudates in retinal images can assist in early screening of Diabetic Retinopathy. Several techniques can achieve good performance on a good quality retinal images. But when the image is of low quality, we need a new method. In this paper, we presented a novel method for the detection of exudates in low quality retinal images. The colour retinal images are pre-processed by a hyperbolic median filter and then segmented using fuzzy c-means clustering algorithm. After segmenting the images, a set of features based on colour, size and texture are extracted. Then these features are optimized using Particle Swarm Optimization (PSO) technique. Finally the features are classified using a recursive Support Vector Machine (SVM) Classifier. The proposed method achieves an accuracy of 98% and predictivity of 98.5% for the identification of exudates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信