倾斜周期势中的最优扩散输运

B. Lindner, M. Kostur, L. Schimansky-Geier
{"title":"倾斜周期势中的最优扩散输运","authors":"B. Lindner, M. Kostur, L. Schimansky-Geier","doi":"10.1142/S0219477501000056","DOIUrl":null,"url":null,"abstract":"We study the diffusive motion of an overdamped Brownian particle in a tilted periodic potential. Mapping the continuous dynamics onto a discrete cumulative process we find exact expressions for the diffusion coefficient and the Peclet number which characterize the transport. At a sufficiently strong but subcritical bias an optimized transport with respect to the noise strength is observed. These results are confirmed by numerical solution of the Fokker-Planck equation.","PeriodicalId":191232,"journal":{"name":"The Random and Fluctuating World","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"OPTIMAL DIFFUSIVE TRANSPORT IN A TILTED PERIODIC POTENTIAL\",\"authors\":\"B. Lindner, M. Kostur, L. Schimansky-Geier\",\"doi\":\"10.1142/S0219477501000056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the diffusive motion of an overdamped Brownian particle in a tilted periodic potential. Mapping the continuous dynamics onto a discrete cumulative process we find exact expressions for the diffusion coefficient and the Peclet number which characterize the transport. At a sufficiently strong but subcritical bias an optimized transport with respect to the noise strength is observed. These results are confirmed by numerical solution of the Fokker-Planck equation.\",\"PeriodicalId\":191232,\"journal\":{\"name\":\"The Random and Fluctuating World\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Random and Fluctuating World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219477501000056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Random and Fluctuating World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219477501000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

研究了一个过阻尼布朗粒子在倾斜周期势中的扩散运动。将连续动力学映射到离散累积过程中,我们找到了表征输运的扩散系数和佩莱特数的精确表达式。在足够强的亚临界偏压下,观察到相对于噪声强度的最佳输运。这些结果得到了Fokker-Planck方程数值解的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMAL DIFFUSIVE TRANSPORT IN A TILTED PERIODIC POTENTIAL
We study the diffusive motion of an overdamped Brownian particle in a tilted periodic potential. Mapping the continuous dynamics onto a discrete cumulative process we find exact expressions for the diffusion coefficient and the Peclet number which characterize the transport. At a sufficiently strong but subcritical bias an optimized transport with respect to the noise strength is observed. These results are confirmed by numerical solution of the Fokker-Planck equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信