基于自我网络的收益最大化虚拟网络嵌入方案

Ihsan Ullah, Hyun-kyo Lim, Youn-Hee Han
{"title":"基于自我网络的收益最大化虚拟网络嵌入方案","authors":"Ihsan Ullah, Hyun-kyo Lim, Youn-Hee Han","doi":"10.1109/ICAIIC51459.2021.9415185","DOIUrl":null,"url":null,"abstract":"Network Virtualization (NV) technology allows multiple virtual network requests to share resources on the same subtract network. In network virtualization, Virtual Network Embedding (VNE) is one of the main techniques used to map a virtual network to the substrate network. The effectiveness and efficiency of the virtual network are determined by the performance of the embedding algorithm. Hence, an efficient embedding algorithm is required to reduce the rejection rate and embed the maximum number of virtual networks which best fit the subtract network. In this article, we propose Ego Network-based Virtual Network Embedding (EN-ViNE) algorithm which aims to improve the performance of the embedding to accept more VNRs and increase the long-term revenue. We utilize the ego-network technique to search the nearest subtract nodes for embedding virtual nodes and found the shortest path between them for link embedding. The proposed scheme attempts to minimize the rejection of virtual network requests (VNRs) that are intended to maximize the long-term revenue for the substrate network provider. Extensive computer simulation reveals that the proposed scheme considerably outperforms the existing algorithms, topology-aware, and baseline for the long-term average revenue, acceptance ratio, and revenue/cost ratio.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ego Network-based Virtual Network Embedding Scheme for Revenue Maximization\",\"authors\":\"Ihsan Ullah, Hyun-kyo Lim, Youn-Hee Han\",\"doi\":\"10.1109/ICAIIC51459.2021.9415185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Virtualization (NV) technology allows multiple virtual network requests to share resources on the same subtract network. In network virtualization, Virtual Network Embedding (VNE) is one of the main techniques used to map a virtual network to the substrate network. The effectiveness and efficiency of the virtual network are determined by the performance of the embedding algorithm. Hence, an efficient embedding algorithm is required to reduce the rejection rate and embed the maximum number of virtual networks which best fit the subtract network. In this article, we propose Ego Network-based Virtual Network Embedding (EN-ViNE) algorithm which aims to improve the performance of the embedding to accept more VNRs and increase the long-term revenue. We utilize the ego-network technique to search the nearest subtract nodes for embedding virtual nodes and found the shortest path between them for link embedding. The proposed scheme attempts to minimize the rejection of virtual network requests (VNRs) that are intended to maximize the long-term revenue for the substrate network provider. Extensive computer simulation reveals that the proposed scheme considerably outperforms the existing algorithms, topology-aware, and baseline for the long-term average revenue, acceptance ratio, and revenue/cost ratio.\",\"PeriodicalId\":432977,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC51459.2021.9415185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

网络虚拟化(NV)技术允许多个虚拟网络请求在同一减去网络上共享资源。在网络虚拟化中,虚拟网络嵌入(VNE)是将虚拟网络映射到底层网络的主要技术之一。虚拟网络的有效性和效率取决于嵌入算法的性能。因此,需要一种有效的嵌入算法来降低拒绝率,并嵌入最适合相减网络的虚拟网络的最大数量。本文提出了基于Ego Network的虚拟网络嵌入(EN-ViNE)算法,该算法旨在提高嵌入的性能,以接受更多的虚拟网络,并增加长期收益。我们利用自我网络技术搜索最近的相减节点来嵌入虚拟节点,并找到它们之间的最短路径来嵌入链接。所提出的方案试图最大限度地减少虚拟网络请求(vnr)的拒绝,这些请求旨在最大化底层网络提供商的长期收入。大量的计算机模拟表明,所提出的方案大大优于现有的算法、拓扑感知和长期平均收入、接受率和收入/成本比的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ego Network-based Virtual Network Embedding Scheme for Revenue Maximization
Network Virtualization (NV) technology allows multiple virtual network requests to share resources on the same subtract network. In network virtualization, Virtual Network Embedding (VNE) is one of the main techniques used to map a virtual network to the substrate network. The effectiveness and efficiency of the virtual network are determined by the performance of the embedding algorithm. Hence, an efficient embedding algorithm is required to reduce the rejection rate and embed the maximum number of virtual networks which best fit the subtract network. In this article, we propose Ego Network-based Virtual Network Embedding (EN-ViNE) algorithm which aims to improve the performance of the embedding to accept more VNRs and increase the long-term revenue. We utilize the ego-network technique to search the nearest subtract nodes for embedding virtual nodes and found the shortest path between them for link embedding. The proposed scheme attempts to minimize the rejection of virtual network requests (VNRs) that are intended to maximize the long-term revenue for the substrate network provider. Extensive computer simulation reveals that the proposed scheme considerably outperforms the existing algorithms, topology-aware, and baseline for the long-term average revenue, acceptance ratio, and revenue/cost ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信