基于历史运行数据的电池储能系统充电状态估计精细化

Lizhong Xiao, Da Lin, Xuesong Zhang, Zhihao Li, Q. Jiang
{"title":"基于历史运行数据的电池储能系统充电状态估计精细化","authors":"Lizhong Xiao, Da Lin, Xuesong Zhang, Zhihao Li, Q. Jiang","doi":"10.1109/ACPEE51499.2021.9436838","DOIUrl":null,"url":null,"abstract":"In a battery energy storage system (BESS), an accurate estimation of state-of-charge (SOC) is of great significance to prevent batteries from over-charging or over-discharging. However, existing SOC estimator implemented in battery management system (BMS) may suffer from significant error, accumulating along with time. This paper discusses an online approach to refine SOC estimation from BMS, taking advantage of historical operating data. After locating SOC reference point from historical time-series data, the maximum available capacity of charge or discharge is tracked online using a weighted least squares (WLS) formulation. Then, a refined SOC value can be determined by coulomb counting. Based on the operation data from a practical BESS, the proposed SOC refining approach is proved to be effective in providing a more accurate estimation.","PeriodicalId":127882,"journal":{"name":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","volume":"33 11-12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refining State-of-Charge Estimation for Battery Energy Storage System using Historical Operating Data\",\"authors\":\"Lizhong Xiao, Da Lin, Xuesong Zhang, Zhihao Li, Q. Jiang\",\"doi\":\"10.1109/ACPEE51499.2021.9436838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a battery energy storage system (BESS), an accurate estimation of state-of-charge (SOC) is of great significance to prevent batteries from over-charging or over-discharging. However, existing SOC estimator implemented in battery management system (BMS) may suffer from significant error, accumulating along with time. This paper discusses an online approach to refine SOC estimation from BMS, taking advantage of historical operating data. After locating SOC reference point from historical time-series data, the maximum available capacity of charge or discharge is tracked online using a weighted least squares (WLS) formulation. Then, a refined SOC value can be determined by coulomb counting. Based on the operation data from a practical BESS, the proposed SOC refining approach is proved to be effective in providing a more accurate estimation.\",\"PeriodicalId\":127882,\"journal\":{\"name\":\"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"volume\":\"33 11-12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPEE51499.2021.9436838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPEE51499.2021.9436838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在电池储能系统(BESS)中,准确估计电池的荷电状态(SOC)对于防止电池过充或过放电具有重要意义。然而,现有的电池管理系统(BMS) SOC估算器存在较大的误差,且误差随时间的推移而累积。本文讨论了一种利用历史运行数据从BMS中在线改进SOC估计的方法。从历史时间序列数据中找到SOC参考点后,使用加权最小二乘(WLS)公式在线跟踪充电或放电的最大可用容量。然后,可以通过库仑计数确定精确的SOC值。在实际BESS运行数据的基础上,验证了所提SOC精炼方法的有效性,可提供更准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining State-of-Charge Estimation for Battery Energy Storage System using Historical Operating Data
In a battery energy storage system (BESS), an accurate estimation of state-of-charge (SOC) is of great significance to prevent batteries from over-charging or over-discharging. However, existing SOC estimator implemented in battery management system (BMS) may suffer from significant error, accumulating along with time. This paper discusses an online approach to refine SOC estimation from BMS, taking advantage of historical operating data. After locating SOC reference point from historical time-series data, the maximum available capacity of charge or discharge is tracked online using a weighted least squares (WLS) formulation. Then, a refined SOC value can be determined by coulomb counting. Based on the operation data from a practical BESS, the proposed SOC refining approach is proved to be effective in providing a more accurate estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信