{"title":"拓扑绝缘体中圆锥点的普遍性","authors":"A. Drouot","doi":"10.5802/JEP.152","DOIUrl":null,"url":null,"abstract":"We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ubiquity of conical points in topological insulators\",\"authors\":\"A. Drouot\",\"doi\":\"10.5802/JEP.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ubiquity of conical points in topological insulators
We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.