拓扑绝缘体中圆锥点的普遍性

A. Drouot
{"title":"拓扑绝缘体中圆锥点的普遍性","authors":"A. Drouot","doi":"10.5802/JEP.152","DOIUrl":null,"url":null,"abstract":"We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ubiquity of conical points in topological insulators\",\"authors\":\"A. Drouot\",\"doi\":\"10.5802/JEP.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了依三个参数的厄米矩阵族的简并具有一般的圆锥结构。我们的结果适用于物质拓扑相的研究。这意味着二维拓扑绝缘体的绝热变形通常伴随着类狄拉克传播电流,其总电导率等于圆锥点的手性数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ubiquity of conical points in topological insulators
We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信