TD-NMR在工业4.0中的挑战与成就

Martelozo Cd, Alberto Cl
{"title":"TD-NMR在工业4.0中的挑战与成就","authors":"Martelozo Cd, Alberto Cl","doi":"10.31031/acsr.2019.01.000509","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) is a spectroscopic and imaging technique used in chemistry, physics, biology, medicine, agriculture and in food, biotechnology, pharmaceutical, petroleum and polymer science and technology. The application of NMR can be divided in three great areas: magnetic resonance imaging (MRI) that is widely used in medical diagnostic, highresolution NMR spectroscopy (HR-NMR) that is a powerful method to determine structure and dynamic from small molecules to large molecules, such as proteins and nuclei acids. Both MRI and HR-NMR are based on heavy, bulk and high field superconducting magnets and the instruments are expensive and have to be installed in a controlled environment. The third class of NMR instruments is known as low field NMR or low-resolution NMR or more precise time domain NMR (TD-NMR).","PeriodicalId":175500,"journal":{"name":"Annals of Chemical Science Research","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Challenges and Accomplishments of TD-NMR in Industry 4.0\",\"authors\":\"Martelozo Cd, Alberto Cl\",\"doi\":\"10.31031/acsr.2019.01.000509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear magnetic resonance (NMR) is a spectroscopic and imaging technique used in chemistry, physics, biology, medicine, agriculture and in food, biotechnology, pharmaceutical, petroleum and polymer science and technology. The application of NMR can be divided in three great areas: magnetic resonance imaging (MRI) that is widely used in medical diagnostic, highresolution NMR spectroscopy (HR-NMR) that is a powerful method to determine structure and dynamic from small molecules to large molecules, such as proteins and nuclei acids. Both MRI and HR-NMR are based on heavy, bulk and high field superconducting magnets and the instruments are expensive and have to be installed in a controlled environment. The third class of NMR instruments is known as low field NMR or low-resolution NMR or more precise time domain NMR (TD-NMR).\",\"PeriodicalId\":175500,\"journal\":{\"name\":\"Annals of Chemical Science Research\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Chemical Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/acsr.2019.01.000509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Chemical Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/acsr.2019.01.000509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核磁共振(NMR)是一种光谱和成像技术,应用于化学、物理、生物、医学、农业以及食品、生物技术、制药、石油和聚合物科学与技术。核磁共振的应用可以分为三大领域:广泛应用于医学诊断的磁共振成像(MRI)和高分辨率核磁共振波谱(HR-NMR),这是一种从小分子到大分子(如蛋白质和核酸)的结构和动态测定的有力方法。MRI和HR-NMR都是基于笨重、大块和高场超导磁体,仪器昂贵,必须安装在受控环境中。第三类核磁共振仪器被称为低场核磁共振或低分辨率核磁共振或更精确的时域核磁共振(TD-NMR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and Accomplishments of TD-NMR in Industry 4.0
Nuclear magnetic resonance (NMR) is a spectroscopic and imaging technique used in chemistry, physics, biology, medicine, agriculture and in food, biotechnology, pharmaceutical, petroleum and polymer science and technology. The application of NMR can be divided in three great areas: magnetic resonance imaging (MRI) that is widely used in medical diagnostic, highresolution NMR spectroscopy (HR-NMR) that is a powerful method to determine structure and dynamic from small molecules to large molecules, such as proteins and nuclei acids. Both MRI and HR-NMR are based on heavy, bulk and high field superconducting magnets and the instruments are expensive and have to be installed in a controlled environment. The third class of NMR instruments is known as low field NMR or low-resolution NMR or more precise time domain NMR (TD-NMR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信