vr诱导注意力的深度学习

Gang Li, Muhammad Adeel Khan
{"title":"vr诱导注意力的深度学习","authors":"Gang Li, Muhammad Adeel Khan","doi":"10.1109/AIVR46125.2019.00033","DOIUrl":null,"url":null,"abstract":"Some evidence suggests that virtual reality (VR) approaches may lead to a greater attentional focus than experiencing the same scenarios presented on computer monitors. The aim of this study is to differentiate attention levels captured during a perceptual discrimination task presented on two different viewing platforms, standard personal computer (PC) monitor and head-mounted-display (HMD)-VR, using a well-described electroencephalography (EEG)-based measure (parietal P3b latency) and deep learning-based measure (that is EEG features extracted by a compact convolutional neural network-EEGNet and visualized by a gradient-based relevance attribution method-DeepLIFT). Twenty healthy young adults participated in this perceptual discrimination task in which according to a spatial cue they were required to discriminate either a \"Target\" or \"Distractor\" stimuli on the screen of viewing platforms. Experimental results show that the EEGNet-based classification accuracies are highly correlated with the p values of statistical analysis of P3b. Also, the visualized EEG features are neurophysiologically interpretable. This study provides the first visualized deep learning-based EEG features captured during an HMD-VR-based attentional task.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning on VR-Induced Attention\",\"authors\":\"Gang Li, Muhammad Adeel Khan\",\"doi\":\"10.1109/AIVR46125.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some evidence suggests that virtual reality (VR) approaches may lead to a greater attentional focus than experiencing the same scenarios presented on computer monitors. The aim of this study is to differentiate attention levels captured during a perceptual discrimination task presented on two different viewing platforms, standard personal computer (PC) monitor and head-mounted-display (HMD)-VR, using a well-described electroencephalography (EEG)-based measure (parietal P3b latency) and deep learning-based measure (that is EEG features extracted by a compact convolutional neural network-EEGNet and visualized by a gradient-based relevance attribution method-DeepLIFT). Twenty healthy young adults participated in this perceptual discrimination task in which according to a spatial cue they were required to discriminate either a \\\"Target\\\" or \\\"Distractor\\\" stimuli on the screen of viewing platforms. Experimental results show that the EEGNet-based classification accuracies are highly correlated with the p values of statistical analysis of P3b. Also, the visualized EEG features are neurophysiologically interpretable. This study provides the first visualized deep learning-based EEG features captured during an HMD-VR-based attentional task.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一些证据表明,虚拟现实(VR)方法可能比在电脑显示器上体验相同的场景更能引起人们的注意力。本研究的目的是区分在两种不同的观看平台(标准个人电脑(PC)显示器和头戴式显示器(HMD)-VR)上呈现的知觉辨别任务中捕获的注意力水平。使用描述良好的基于脑电图(EEG)的测量(顶叶P3b潜伏期)和基于深度学习的测量(即由紧凑卷积神经网络eegnet提取的EEG特征,并通过基于梯度的关联归因方法deeplift进行可视化)。20名健康的年轻人参加了这个知觉辨别任务,在这个任务中,他们被要求根据空间线索区分观看平台屏幕上的“目标”或“干扰”刺激。实验结果表明,基于eegnet的分类准确率与P3b统计分析的p值高度相关。此外,可视化的脑电图特征在神经生理学上是可解释的。这项研究提供了在基于hmd - vr的注意力任务中捕获的第一个基于深度学习的可视化EEG特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning on VR-Induced Attention
Some evidence suggests that virtual reality (VR) approaches may lead to a greater attentional focus than experiencing the same scenarios presented on computer monitors. The aim of this study is to differentiate attention levels captured during a perceptual discrimination task presented on two different viewing platforms, standard personal computer (PC) monitor and head-mounted-display (HMD)-VR, using a well-described electroencephalography (EEG)-based measure (parietal P3b latency) and deep learning-based measure (that is EEG features extracted by a compact convolutional neural network-EEGNet and visualized by a gradient-based relevance attribution method-DeepLIFT). Twenty healthy young adults participated in this perceptual discrimination task in which according to a spatial cue they were required to discriminate either a "Target" or "Distractor" stimuli on the screen of viewing platforms. Experimental results show that the EEGNet-based classification accuracies are highly correlated with the p values of statistical analysis of P3b. Also, the visualized EEG features are neurophysiologically interpretable. This study provides the first visualized deep learning-based EEG features captured during an HMD-VR-based attentional task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信