{"title":"曼哈顿街和洗牌交换网络中偏转和存储转发技术的比较","authors":"N. Maxemchuk","doi":"10.1109/INFCOM.1989.101529","DOIUrl":null,"url":null,"abstract":"The Manhattan Street Network (MS-Net) and Shuffle-Exchange Network (SX-Net) are two-connected networks with significantly different topologies. Fixed-size packets are transmitted between nodes in these networks. The nodes are synchronized so that all of the packets that are received by a node within a slot transmission time arrive at a switching point simultaneously. Instead of storing large numbers of packets at intermediate nodes, a deflection strategy similar to hot-potato routing is used. There are characteristics of the MS-Net that make it well suited for deflection routing. With no buffer, 55-70% of the throughput with an infinite number of buffers has been obtained; with a single buffer per node, the throughput increases to 80-90%. With uniform load the throughput does not decrease significantly as the network utilization increases. Therefore, additional flow control mechanisms are not required to achieve the highest network throughput. The SX-Net does not have the above characteristics of the MS-Net. However, deflection routing still provides a significant portion of the available throughput. In the SX-Net, more buffers are required than in the MS-Net, and a flow control mechanism must be used to achieve the greatest throughput.<<ETX>>","PeriodicalId":275763,"journal":{"name":"IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"180","resultStr":"{\"title\":\"Comparison of deflection and store-and-forward techniques in the Manhattan Street and Shuffle-Exchange Networks\",\"authors\":\"N. Maxemchuk\",\"doi\":\"10.1109/INFCOM.1989.101529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Manhattan Street Network (MS-Net) and Shuffle-Exchange Network (SX-Net) are two-connected networks with significantly different topologies. Fixed-size packets are transmitted between nodes in these networks. The nodes are synchronized so that all of the packets that are received by a node within a slot transmission time arrive at a switching point simultaneously. Instead of storing large numbers of packets at intermediate nodes, a deflection strategy similar to hot-potato routing is used. There are characteristics of the MS-Net that make it well suited for deflection routing. With no buffer, 55-70% of the throughput with an infinite number of buffers has been obtained; with a single buffer per node, the throughput increases to 80-90%. With uniform load the throughput does not decrease significantly as the network utilization increases. Therefore, additional flow control mechanisms are not required to achieve the highest network throughput. The SX-Net does not have the above characteristics of the MS-Net. However, deflection routing still provides a significant portion of the available throughput. In the SX-Net, more buffers are required than in the MS-Net, and a flow control mechanism must be used to achieve the greatest throughput.<<ETX>>\",\"PeriodicalId\":275763,\"journal\":{\"name\":\"IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"180\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.1989.101529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.1989.101529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of deflection and store-and-forward techniques in the Manhattan Street and Shuffle-Exchange Networks
The Manhattan Street Network (MS-Net) and Shuffle-Exchange Network (SX-Net) are two-connected networks with significantly different topologies. Fixed-size packets are transmitted between nodes in these networks. The nodes are synchronized so that all of the packets that are received by a node within a slot transmission time arrive at a switching point simultaneously. Instead of storing large numbers of packets at intermediate nodes, a deflection strategy similar to hot-potato routing is used. There are characteristics of the MS-Net that make it well suited for deflection routing. With no buffer, 55-70% of the throughput with an infinite number of buffers has been obtained; with a single buffer per node, the throughput increases to 80-90%. With uniform load the throughput does not decrease significantly as the network utilization increases. Therefore, additional flow control mechanisms are not required to achieve the highest network throughput. The SX-Net does not have the above characteristics of the MS-Net. However, deflection routing still provides a significant portion of the available throughput. In the SX-Net, more buffers are required than in the MS-Net, and a flow control mechanism must be used to achieve the greatest throughput.<>