Stefan Ene, Bogdan Nicolae, Alexandru Costan, Gabriel Antoniu
{"title":"重叠或不重叠:优化按需数据上传的增量MapReduce计算","authors":"Stefan Ene, Bogdan Nicolae, Alexandru Costan, Gabriel Antoniu","doi":"10.1109/DataCloud.2014.7","DOIUrl":null,"url":null,"abstract":"Research on cloud-based Big Data analytics has focused so far on optimizing the performance and cost-effectiveness of the computations, while largely neglecting an important aspect: users need to upload massive datasets on clouds for their computations. This paper studies the problem of running MapReduce applications when considering the simultaneous optimization of performance and cost of both the data upload and its corresponding computation taken together. We analyze the feasibility of incremental MapReduce approaches to advance the computation as much as possible during the data upload by using already transferred data to calculate intermediate results. Our key finding shows that overlapping the transfer time with as many incremental computations as possible is not always efficient: a better solution is to wait for enough to fill the computational capacity of the MapReduce cluster. Results show significant performance and cost reduction compared with state-of-the-art solutions that leverage incremental computations in a naive fashion.","PeriodicalId":121831,"journal":{"name":"2014 5th International Workshop on Data-Intensive Computing in the Clouds","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"To Overlap or Not to Overlap: Optimizing Incremental MapReduce Computations for On-Demand Data Upload\",\"authors\":\"Stefan Ene, Bogdan Nicolae, Alexandru Costan, Gabriel Antoniu\",\"doi\":\"10.1109/DataCloud.2014.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on cloud-based Big Data analytics has focused so far on optimizing the performance and cost-effectiveness of the computations, while largely neglecting an important aspect: users need to upload massive datasets on clouds for their computations. This paper studies the problem of running MapReduce applications when considering the simultaneous optimization of performance and cost of both the data upload and its corresponding computation taken together. We analyze the feasibility of incremental MapReduce approaches to advance the computation as much as possible during the data upload by using already transferred data to calculate intermediate results. Our key finding shows that overlapping the transfer time with as many incremental computations as possible is not always efficient: a better solution is to wait for enough to fill the computational capacity of the MapReduce cluster. Results show significant performance and cost reduction compared with state-of-the-art solutions that leverage incremental computations in a naive fashion.\",\"PeriodicalId\":121831,\"journal\":{\"name\":\"2014 5th International Workshop on Data-Intensive Computing in the Clouds\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th International Workshop on Data-Intensive Computing in the Clouds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DataCloud.2014.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th International Workshop on Data-Intensive Computing in the Clouds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DataCloud.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To Overlap or Not to Overlap: Optimizing Incremental MapReduce Computations for On-Demand Data Upload
Research on cloud-based Big Data analytics has focused so far on optimizing the performance and cost-effectiveness of the computations, while largely neglecting an important aspect: users need to upload massive datasets on clouds for their computations. This paper studies the problem of running MapReduce applications when considering the simultaneous optimization of performance and cost of both the data upload and its corresponding computation taken together. We analyze the feasibility of incremental MapReduce approaches to advance the computation as much as possible during the data upload by using already transferred data to calculate intermediate results. Our key finding shows that overlapping the transfer time with as many incremental computations as possible is not always efficient: a better solution is to wait for enough to fill the computational capacity of the MapReduce cluster. Results show significant performance and cost reduction compared with state-of-the-art solutions that leverage incremental computations in a naive fashion.