求解双目标p中值问题的遗传算法与局部搜索比较

Panwadee Tangpattanakul
{"title":"求解双目标p中值问题的遗传算法与局部搜索比较","authors":"Panwadee Tangpattanakul","doi":"10.1109/ICIEV.2015.7334052","DOIUrl":null,"url":null,"abstract":"This paper presents two algorithms, which are a nondominated sorting genetic algorithm II (NSGA-II) and an indicator-based multi-objective local search (IBMOLS), for solving a bi-objective p-Median problem. The bi-objective p-Median problem is a problem of finding p location points to install facilities from a set of m candidates. This problem considers two objectives: minimizing the sum of the distances from each customer to the nearest facility and minimizing the sum of the costs to install each facility in the selected location points. NSGA-II and IBMOLS are efficient algorithms in the area of multi-objective optimization. Experiments are conducted on generated instances. Hypervolume values of the approximate Pareto fronts are computed and the obtained results from IBMOLS and NSGA-II are compared.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic algorithm and local search comparison for solving bi-objective p-Median problem\",\"authors\":\"Panwadee Tangpattanakul\",\"doi\":\"10.1109/ICIEV.2015.7334052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two algorithms, which are a nondominated sorting genetic algorithm II (NSGA-II) and an indicator-based multi-objective local search (IBMOLS), for solving a bi-objective p-Median problem. The bi-objective p-Median problem is a problem of finding p location points to install facilities from a set of m candidates. This problem considers two objectives: minimizing the sum of the distances from each customer to the nearest facility and minimizing the sum of the costs to install each facility in the selected location points. NSGA-II and IBMOLS are efficient algorithms in the area of multi-objective optimization. Experiments are conducted on generated instances. Hypervolume values of the approximate Pareto fronts are computed and the obtained results from IBMOLS and NSGA-II are compared.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了求解双目标p-Median问题的非支配排序遗传算法II (NSGA-II)和基于指标的多目标局部搜索算法(IBMOLS)。双目标p中值问题是从一组m个候选点中找到p个位置点来安装设施的问题。这个问题考虑了两个目标:最小化从每个客户到最近的设施的距离总和和最小化在选定的位置点安装每个设施的成本总和。NSGA-II和IBMOLS是多目标优化领域的有效算法。在生成的实例上进行了实验。计算了近似Pareto前的超体积值,并比较了IBMOLS和NSGA-II的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm and local search comparison for solving bi-objective p-Median problem
This paper presents two algorithms, which are a nondominated sorting genetic algorithm II (NSGA-II) and an indicator-based multi-objective local search (IBMOLS), for solving a bi-objective p-Median problem. The bi-objective p-Median problem is a problem of finding p location points to install facilities from a set of m candidates. This problem considers two objectives: minimizing the sum of the distances from each customer to the nearest facility and minimizing the sum of the costs to install each facility in the selected location points. NSGA-II and IBMOLS are efficient algorithms in the area of multi-objective optimization. Experiments are conducted on generated instances. Hypervolume values of the approximate Pareto fronts are computed and the obtained results from IBMOLS and NSGA-II are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信