应用遗传算法优化BP神经网络

{"title":"应用遗传算法优化BP神经网络","authors":"","doi":"10.36652/0869-4931-2020-74-6-259-263","DOIUrl":null,"url":null,"abstract":"A genetic algorithm is proposed to us to prevent a local minimum defect when using the BP neural network learning algorithm. The genetic algorithm is first used to optimize the weight and threshold of the BP neural network, and then obtained values are used to optimize the BP neural network. Optimized network performance is estimated using simulation data. The results of numerical simulations show that the BP neural network optimized by the genetic algorithm can effectively eliminate a local minimum defect, which is easy to find in the original BP neural network, and has the advantages of fast convergence rate and high accuracy.\n\nKeywords\nBP neural network; genetic algorithm; local minimum defect; optimization","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a genetic algorithm to optimize BP neural networks\",\"authors\":\"\",\"doi\":\"10.36652/0869-4931-2020-74-6-259-263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm is proposed to us to prevent a local minimum defect when using the BP neural network learning algorithm. The genetic algorithm is first used to optimize the weight and threshold of the BP neural network, and then obtained values are used to optimize the BP neural network. Optimized network performance is estimated using simulation data. The results of numerical simulations show that the BP neural network optimized by the genetic algorithm can effectively eliminate a local minimum defect, which is easy to find in the original BP neural network, and has the advantages of fast convergence rate and high accuracy.\\n\\nKeywords\\nBP neural network; genetic algorithm; local minimum defect; optimization\",\"PeriodicalId\":309803,\"journal\":{\"name\":\"Automation. Modern Techologies\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation. Modern Techologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36652/0869-4931-2020-74-6-259-263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2020-74-6-259-263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对BP神经网络学习算法中出现的局部最小缺陷,提出了一种遗传算法。首先利用遗传算法对BP神经网络的权值和阈值进行优化,然后利用得到的值对BP神经网络进行优化。利用仿真数据估计优化后的网络性能。数值仿真结果表明,采用遗传算法优化后的BP神经网络能够有效地消除原有BP神经网络中容易发现的局部最小缺陷,具有收敛速度快、精度高等优点。关键词bp神经网络;遗传算法;局部最小缺陷;优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a genetic algorithm to optimize BP neural networks
A genetic algorithm is proposed to us to prevent a local minimum defect when using the BP neural network learning algorithm. The genetic algorithm is first used to optimize the weight and threshold of the BP neural network, and then obtained values are used to optimize the BP neural network. Optimized network performance is estimated using simulation data. The results of numerical simulations show that the BP neural network optimized by the genetic algorithm can effectively eliminate a local minimum defect, which is easy to find in the original BP neural network, and has the advantages of fast convergence rate and high accuracy. Keywords BP neural network; genetic algorithm; local minimum defect; optimization
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信