一种用于三二极管PV模型参数提取的改进RCGA

M. El-Dabah, R. El-Sehiemy, A. Abdelbaset
{"title":"一种用于三二极管PV模型参数提取的改进RCGA","authors":"M. El-Dabah, R. El-Sehiemy, A. Abdelbaset","doi":"10.1109/MEPCON55441.2022.10021732","DOIUrl":null,"url":null,"abstract":"In recent years, it was noticed an increased involvement of the renewable energy resources such as the solar photovoltaics (PV's) to share into covering the increased load requirements in modern power systems. Electrical ciruits are developed to model PV cells/modules. Parameter extraction of the appropriate PV modules is one of the hot research topics that attract researchers' for possible assessing the performance and operation and control issues of PVs. Parameters estimation of PV cells is a highly nonlinear optimization problem, in this regard several optimization algorithms are exploited to tackle this challenge. In this study, the improved real coded genetic algorithm (IRGA) spreads an enhanced performance of the well-known genetic algorithms. The IRGA investigated parameter extraction of the most accurate diode PV module model for PV commercial modules. The attained result of the IRGA shows the high accuracy of the estimated parameters. This can be validated from the examination of the identified parameters to plot the I-v curve and show the accompaniment of the estimated and measured values. Moreover, the IRGA convergence curve shows up a competitive convergence rate and robustness when assessed with other recent optimization algorithms.","PeriodicalId":174878,"journal":{"name":"2022 23rd International Middle East Power Systems Conference (MEPCON)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved RCGA for Parameter extraction of three-diode PV model\",\"authors\":\"M. El-Dabah, R. El-Sehiemy, A. Abdelbaset\",\"doi\":\"10.1109/MEPCON55441.2022.10021732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, it was noticed an increased involvement of the renewable energy resources such as the solar photovoltaics (PV's) to share into covering the increased load requirements in modern power systems. Electrical ciruits are developed to model PV cells/modules. Parameter extraction of the appropriate PV modules is one of the hot research topics that attract researchers' for possible assessing the performance and operation and control issues of PVs. Parameters estimation of PV cells is a highly nonlinear optimization problem, in this regard several optimization algorithms are exploited to tackle this challenge. In this study, the improved real coded genetic algorithm (IRGA) spreads an enhanced performance of the well-known genetic algorithms. The IRGA investigated parameter extraction of the most accurate diode PV module model for PV commercial modules. The attained result of the IRGA shows the high accuracy of the estimated parameters. This can be validated from the examination of the identified parameters to plot the I-v curve and show the accompaniment of the estimated and measured values. Moreover, the IRGA convergence curve shows up a competitive convergence rate and robustness when assessed with other recent optimization algorithms.\",\"PeriodicalId\":174878,\"journal\":{\"name\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEPCON55441.2022.10021732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON55441.2022.10021732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们注意到可再生能源如太阳能光伏(PV’s)越来越多地参与到现代电力系统中,以满足日益增加的负荷需求。开发电路来模拟PV电池/模块。合适光伏组件的参数提取是研究人员关注的热点之一,为评估光伏性能和运行控制问题提供了可能。光伏电池参数估计是一个高度非线性的优化问题,在这方面,有几种优化算法被用来解决这一挑战。在本研究中,改进的实数编码遗传算法(IRGA)扩展了已知遗传算法的性能。IRGA研究了最精确的二极管光伏组件模型参数提取方法。结果表明,IRGA的估计参数具有较高的精度。这可以通过对已识别参数的检查来验证,以绘制I-v曲线并显示估计值和测量值的伴随值。此外,与其他最新的优化算法相比,IRGA收敛曲线显示出具有竞争力的收敛速度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved RCGA for Parameter extraction of three-diode PV model
In recent years, it was noticed an increased involvement of the renewable energy resources such as the solar photovoltaics (PV's) to share into covering the increased load requirements in modern power systems. Electrical ciruits are developed to model PV cells/modules. Parameter extraction of the appropriate PV modules is one of the hot research topics that attract researchers' for possible assessing the performance and operation and control issues of PVs. Parameters estimation of PV cells is a highly nonlinear optimization problem, in this regard several optimization algorithms are exploited to tackle this challenge. In this study, the improved real coded genetic algorithm (IRGA) spreads an enhanced performance of the well-known genetic algorithms. The IRGA investigated parameter extraction of the most accurate diode PV module model for PV commercial modules. The attained result of the IRGA shows the high accuracy of the estimated parameters. This can be validated from the examination of the identified parameters to plot the I-v curve and show the accompaniment of the estimated and measured values. Moreover, the IRGA convergence curve shows up a competitive convergence rate and robustness when assessed with other recent optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信