Chia-Tung Ho, Alvin Ho, Matthew R. Fojtik, Minsoo Kim, Shang Wei, Yaguang Li, Brucek Khailany, Haoxing Ren
{"title":"基于栅格图可达性模型的高级节点可达性驱动标准单元布局","authors":"Chia-Tung Ho, Alvin Ho, Matthew R. Fojtik, Minsoo Kim, Shang Wei, Yaguang Li, Brucek Khailany, Haoxing Ren","doi":"10.1145/3569052.3578920","DOIUrl":null,"url":null,"abstract":"Standard cells are essential components of modern digital circuit designs. With process technologies advancing beyond the 5nm node, more routability issues have arisen due to the decreasing number of routing tracks, increasing number and complexity of design rules, and strict patterning rules. Automatic standard cell synthesis tools are struggling to design cells with severe routability issues. In this paper, we propose a routability-driven standard cell synthesis framework using a novel pin density aware congestion metric, lattice graph routability modelling approach, and dynamic external pin allocation methodology to generate routability optimized layouts. On a benchmark of 94 complex and hard-to-route standard cells, NVCell 2 improves the number of routable and LVS/DRC clean cell layouts by 84.0% and 87.2%, respectively. NVCell 2 can generate 98.9% of cells LVS/DRC clean, with 13.9% of the cells having smaller area, compared to an industrial standard cell library with over 1000 standard cells.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NVCell 2: Routability-Driven Standard Cell Layout in Advanced Nodes with Lattice Graph Routability Model\",\"authors\":\"Chia-Tung Ho, Alvin Ho, Matthew R. Fojtik, Minsoo Kim, Shang Wei, Yaguang Li, Brucek Khailany, Haoxing Ren\",\"doi\":\"10.1145/3569052.3578920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard cells are essential components of modern digital circuit designs. With process technologies advancing beyond the 5nm node, more routability issues have arisen due to the decreasing number of routing tracks, increasing number and complexity of design rules, and strict patterning rules. Automatic standard cell synthesis tools are struggling to design cells with severe routability issues. In this paper, we propose a routability-driven standard cell synthesis framework using a novel pin density aware congestion metric, lattice graph routability modelling approach, and dynamic external pin allocation methodology to generate routability optimized layouts. On a benchmark of 94 complex and hard-to-route standard cells, NVCell 2 improves the number of routable and LVS/DRC clean cell layouts by 84.0% and 87.2%, respectively. NVCell 2 can generate 98.9% of cells LVS/DRC clean, with 13.9% of the cells having smaller area, compared to an industrial standard cell library with over 1000 standard cells.\",\"PeriodicalId\":169581,\"journal\":{\"name\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569052.3578920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NVCell 2: Routability-Driven Standard Cell Layout in Advanced Nodes with Lattice Graph Routability Model
Standard cells are essential components of modern digital circuit designs. With process technologies advancing beyond the 5nm node, more routability issues have arisen due to the decreasing number of routing tracks, increasing number and complexity of design rules, and strict patterning rules. Automatic standard cell synthesis tools are struggling to design cells with severe routability issues. In this paper, we propose a routability-driven standard cell synthesis framework using a novel pin density aware congestion metric, lattice graph routability modelling approach, and dynamic external pin allocation methodology to generate routability optimized layouts. On a benchmark of 94 complex and hard-to-route standard cells, NVCell 2 improves the number of routable and LVS/DRC clean cell layouts by 84.0% and 87.2%, respectively. NVCell 2 can generate 98.9% of cells LVS/DRC clean, with 13.9% of the cells having smaller area, compared to an industrial standard cell library with over 1000 standard cells.