机器学习和网络安全

R. Das, Thomas H. Morris
{"title":"机器学习和网络安全","authors":"R. Das, Thomas H. Morris","doi":"10.1109/ICCECE.2017.8526232","DOIUrl":null,"url":null,"abstract":"The application of machine learning (ML) technique in cyber-security is increasing than ever before. Starting from IP traffic classification, filtering malicious traffic for intrusion detection, ML is the one of the promising answers that can be effective against zero day threats. New research is being done by use of statistical traffic characteristics and ML techniques. This paper is a focused literature survey of machine learning and its application to cyber analytics for intrusion detection, traffic classification and applications such as email filtering. Based on the relevance and the number of citation each methods were identified and summarized. Because datasets are an important part of the ML approaches some well know datasets are also mentioned. Some recommendations are also provided on when to use a given algorithm. An evaluation of four ML algorithms has been performed on MODBUS data collected from a gas pipeline. Various attacks have been classified using the ML algorithms and finally the performance of each algorithm have been assessed.","PeriodicalId":325599,"journal":{"name":"2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Machine Learning and Cyber Security\",\"authors\":\"R. Das, Thomas H. Morris\",\"doi\":\"10.1109/ICCECE.2017.8526232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of machine learning (ML) technique in cyber-security is increasing than ever before. Starting from IP traffic classification, filtering malicious traffic for intrusion detection, ML is the one of the promising answers that can be effective against zero day threats. New research is being done by use of statistical traffic characteristics and ML techniques. This paper is a focused literature survey of machine learning and its application to cyber analytics for intrusion detection, traffic classification and applications such as email filtering. Based on the relevance and the number of citation each methods were identified and summarized. Because datasets are an important part of the ML approaches some well know datasets are also mentioned. Some recommendations are also provided on when to use a given algorithm. An evaluation of four ML algorithms has been performed on MODBUS data collected from a gas pipeline. Various attacks have been classified using the ML algorithms and finally the performance of each algorithm have been assessed.\",\"PeriodicalId\":325599,\"journal\":{\"name\":\"2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE.2017.8526232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE.2017.8526232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

机器学习技术在网络安全中的应用比以往任何时候都要多。从IP流量分类开始,过滤恶意流量进行入侵检测,ML是可以有效对抗零日威胁的有希望的答案之一。新的研究正在使用统计流量特征和机器学习技术进行。本文重点综述了机器学习及其在入侵检测、流量分类和电子邮件过滤等网络分析中的应用。根据文献的相关性和被引次数对各种方法进行了识别和总结。由于数据集是ML方法的重要组成部分,因此还提到了一些众所周知的数据集。还提供了一些关于何时使用给定算法的建议。在某输气管道MODBUS数据上,对四种机器学习算法进行了评估。使用ML算法对各种攻击进行了分类,最后对每种算法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Cyber Security
The application of machine learning (ML) technique in cyber-security is increasing than ever before. Starting from IP traffic classification, filtering malicious traffic for intrusion detection, ML is the one of the promising answers that can be effective against zero day threats. New research is being done by use of statistical traffic characteristics and ML techniques. This paper is a focused literature survey of machine learning and its application to cyber analytics for intrusion detection, traffic classification and applications such as email filtering. Based on the relevance and the number of citation each methods were identified and summarized. Because datasets are an important part of the ML approaches some well know datasets are also mentioned. Some recommendations are also provided on when to use a given algorithm. An evaluation of four ML algorithms has been performed on MODBUS data collected from a gas pipeline. Various attacks have been classified using the ML algorithms and finally the performance of each algorithm have been assessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信